Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvel Structured version   Visualization version   GIF version

Theorem ltrncnvel 35900
Description: The converse of the lattice translation of an atom not under the fiducial co-atom. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnvel (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))

Proof of Theorem ltrncnvel
StepHypRef Expression
1 ltrnel.l . . . 4 = (le‘𝐾)
2 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
3 ltrnel.h . . . 4 𝐻 = (LHyp‘𝐾)
4 ltrnel.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
51, 2, 3, 4ltrncnvat 35899 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
653adant3r 1173 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
7 simp3r 1221 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
8 simp1 1128 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9 simp2 1129 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
10 eqid 2748 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1110, 2atbase 35048 . . . . . 6 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ (Base‘𝐾))
126, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ (Base‘𝐾))
13 simp1r 1217 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
1410, 3lhpbase 35756 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1513, 14syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
1610, 1, 3, 4ltrnle 35887 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ ((𝐹𝑃) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝐹𝑃) 𝑊 ↔ (𝐹‘(𝐹𝑃)) (𝐹𝑊)))
178, 9, 12, 15, 16syl112anc 1467 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) 𝑊 ↔ (𝐹‘(𝐹𝑃)) (𝐹𝑊)))
1810, 3, 4ltrn1o 35882 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
19183adant3 1124 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
20 simp3l 1220 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
2110, 2atbase 35048 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
23 f1ocnvfv2 6684 . . . . . 6 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → (𝐹‘(𝐹𝑃)) = 𝑃)
2419, 22, 23syl2anc 696 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹‘(𝐹𝑃)) = 𝑃)
25 simp1l 1216 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
26 hllat 35122 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2725, 26syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
2810, 1latref 17225 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊 𝑊)
2927, 15, 28syl2anc 696 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 𝑊)
3010, 1, 3, 4ltrnval1 35892 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊 𝑊)) → (𝐹𝑊) = 𝑊)
318, 9, 15, 29, 30syl112anc 1467 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑊) = 𝑊)
3224, 31breq12d 4805 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹‘(𝐹𝑃)) (𝐹𝑊) ↔ 𝑃 𝑊))
3317, 32bitrd 268 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) 𝑊𝑃 𝑊))
347, 33mtbird 314 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝐹𝑃) 𝑊)
356, 34jca 555 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127   class class class wbr 4792  ccnv 5253  1-1-ontowf1o 6036  cfv 6037  Basecbs 16030  lecple 16121  Latclat 17217  Atomscatm 35022  HLchlt 35109  LHypclh 35742  LTrncltrn 35859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-map 8013  df-preset 17100  df-poset 17118  df-plt 17130  df-glb 17147  df-p0 17211  df-lat 17218  df-oposet 34935  df-ol 34937  df-oml 34938  df-covers 35025  df-ats 35026  df-atl 35057  df-cvlat 35081  df-hlat 35110  df-lhyp 35746  df-laut 35747  df-ldil 35862  df-ltrn 35863
This theorem is referenced by:  ltrncnv  35904  cdlemg17h  36427
  Copyright terms: Public domain W3C validator