Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncnvatb Structured version   Visualization version   GIF version

Theorem ltrncnvatb 35946
Description: The converse of the lattice translation of an atom is an atom. (Contributed by NM, 2-Jun-2012.)
Hypotheses
Ref Expression
ltrnatb.b 𝐵 = (Base‘𝐾)
ltrnatb.a 𝐴 = (Atoms‘𝐾)
ltrnatb.h 𝐻 = (LHyp‘𝐾)
ltrnatb.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncnvatb (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))

Proof of Theorem ltrncnvatb
StepHypRef Expression
1 ltrnatb.b . . . . 5 𝐵 = (Base‘𝐾)
2 ltrnatb.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 ltrnatb.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrn1o 35932 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:𝐵1-1-onto𝐵)
5 f1ocnvdm 6683 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑃𝐵) → (𝐹𝑃) ∈ 𝐵)
64, 5stoic3 1849 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹𝑃) ∈ 𝐵)
7 ltrnatb.a . . . 4 𝐴 = (Atoms‘𝐾)
81, 7, 2, 3ltrnatb 35945 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐹𝑃) ∈ 𝐵) → ((𝐹𝑃) ∈ 𝐴 ↔ (𝐹‘(𝐹𝑃)) ∈ 𝐴))
96, 8syld3an3 1515 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹𝑃) ∈ 𝐴 ↔ (𝐹‘(𝐹𝑃)) ∈ 𝐴))
10 f1ocnvfv2 6676 . . . 4 ((𝐹:𝐵1-1-onto𝐵𝑃𝐵) → (𝐹‘(𝐹𝑃)) = 𝑃)
114, 10stoic3 1849 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝐹‘(𝐹𝑃)) = 𝑃)
1211eleq1d 2835 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → ((𝐹‘(𝐹𝑃)) ∈ 𝐴𝑃𝐴))
139, 12bitr2d 269 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐵) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  ccnv 5248  1-1-ontowf1o 6030  cfv 6031  Basecbs 16064  Atomscatm 35072  HLchlt 35159  LHypclh 35792  LTrncltrn 35909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-plt 17166  df-glb 17183  df-p0 17247  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-hlat 35160  df-lhyp 35796  df-laut 35797  df-ldil 35912  df-ltrn 35913
This theorem is referenced by:  ltrncnvat  35949
  Copyright terms: Public domain W3C validator