Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncl Structured version   Visualization version   GIF version

Theorem ltrncl 35926
Description: Closure of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrn1o.b 𝐵 = (Base‘𝐾)
ltrn1o.h 𝐻 = (LHyp‘𝐾)
ltrn1o.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncl (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)

Proof of Theorem ltrncl
StepHypRef Expression
1 simp1l 1238 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝐾𝑉)
2 ltrn1o.h . . . 4 𝐻 = (LHyp‘𝐾)
3 eqid 2770 . . . 4 (LAut‘𝐾) = (LAut‘𝐾)
4 ltrn1o.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnlaut 35924 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1125 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝐹 ∈ (LAut‘𝐾))
7 simp3 1131 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → 𝑋𝐵)
8 ltrn1o.b . . 3 𝐵 = (Base‘𝐾)
98, 3lautcl 35888 . 2 (((𝐾𝑉𝐹 ∈ (LAut‘𝐾)) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
101, 6, 7, 9syl21anc 1474 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  cfv 6031  Basecbs 16063  LHypclh 35785  LAutclaut 35786  LTrncltrn 35902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-map 8010  df-laut 35790  df-ldil 35905  df-ltrn 35906
This theorem is referenced by:  ltrnatb  35938  ltrneq2  35949  trlval2  35965  trlcl  35966  trljat1  35968  trljat2  35969  trlle  35986  cdlemc4  35996  cdlemc5  35997  cdlemd7  36006  cdlemg4c  36414  cdlemg7N  36428  cdlemg8b  36430  cdlemg11b  36444  trlcolem  36528  cdlemg44a  36533  cdlemi1  36620  cdlemi  36622  cdlemkvcl  36644  cdlemkid1  36724  cdlemm10N  36921  dih1dimatlem  37132
  Copyright terms: Public domain W3C validator