Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnatlw Structured version   Visualization version   GIF version

Theorem ltrnatlw 35985
 Description: If the value of an atom equals the atom in a non-identity translation, the atom is under the fiducial hyperplane. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
ltrn2eq.l = (le‘𝐾)
ltrn2eq.a 𝐴 = (Atoms‘𝐾)
ltrn2eq.h 𝐻 = (LHyp‘𝐾)
ltrn2eq.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnatlw (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → 𝑄 𝑊)

Proof of Theorem ltrnatlw
StepHypRef Expression
1 simp3r 1243 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → (𝐹𝑄) = 𝑄)
2 simpl1 1226 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simpl21 1319 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → 𝐹𝑇)
4 simpl22 1321 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simpl23 1323 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → 𝑄𝐴)
6 simpr 471 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → ¬ 𝑄 𝑊)
75, 6jca 495 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
8 simpl3l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐹𝑃) ≠ 𝑃)
9 ltrn2eq.l . . . . . 6 = (le‘𝐾)
10 ltrn2eq.a . . . . . 6 𝐴 = (Atoms‘𝐾)
11 ltrn2eq.h . . . . . 6 𝐻 = (LHyp‘𝐾)
12 ltrn2eq.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
139, 10, 11, 12ltrnatneq 35984 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑃) ≠ 𝑃) → (𝐹𝑄) ≠ 𝑄)
142, 3, 4, 7, 8, 13syl131anc 1488 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) ∧ ¬ 𝑄 𝑊) → (𝐹𝑄) ≠ 𝑄)
1514ex 397 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → (¬ 𝑄 𝑊 → (𝐹𝑄) ≠ 𝑄))
1615necon4bd 2962 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → ((𝐹𝑄) = 𝑄𝑄 𝑊))
171, 16mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝐹𝑃) ≠ 𝑃 ∧ (𝐹𝑄) = 𝑄)) → 𝑄 𝑊)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144   ≠ wne 2942   class class class wbr 4784  ‘cfv 6031  lecple 16155  Atomscatm 35065  HLchlt 35152  LHypclh 35785  LTrncltrn 35902 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-map 8010  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961 This theorem is referenced by:  cdlemg18  36484
 Copyright terms: Public domain W3C validator