![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnat | Structured version Visualization version GIF version |
Description: The lattice translation of an atom is also an atom. TODO: See if this can shorten some ltrnel 35940 uses. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
ltrnel.l | ⊢ ≤ = (le‘𝐾) |
ltrnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnel.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1131 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
2 | eqid 2770 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | ltrnel.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 35091 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | ltrnel.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | ltrnel.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
7 | 2, 3, 5, 6 | ltrnatb 35938 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
8 | 4, 7 | syl3an3 1168 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ↔ (𝐹‘𝑃) ∈ 𝐴)) |
9 | 1, 8 | mpbid 222 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴) → (𝐹‘𝑃) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 Basecbs 16063 lecple 16155 Atomscatm 35065 HLchlt 35152 LHypclh 35785 LTrncltrn 35902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-map 8010 df-plt 17165 df-glb 17182 df-p0 17246 df-oposet 34978 df-ol 34980 df-oml 34981 df-covers 35068 df-ats 35069 df-hlat 35153 df-lhyp 35789 df-laut 35790 df-ldil 35905 df-ltrn 35906 |
This theorem is referenced by: ltrncoat 35945 trlcnv 35967 trljat2 35969 trlat 35971 trlval3 35989 trlval4 35990 cdlemc3 35995 cdlemc5 35997 cdlemg2kq 36404 cdlemg9a 36434 cdlemg9 36436 cdlemg10bALTN 36438 cdlemg10c 36441 cdlemg10a 36442 cdlemg10 36443 cdlemg12a 36445 cdlemg12c 36447 cdlemg13a 36453 cdlemg17a 36463 cdlemg17g 36469 cdlemg18a 36480 cdlemg18b 36481 cdlemg18c 36482 trlcoabs2N 36524 trlcolem 36528 cdlemg42 36531 cdlemi 36622 cdlemk3 36635 cdlemk4 36636 cdlemk6 36639 cdlemk9 36641 cdlemk9bN 36642 cdlemk10 36645 cdlemksat 36648 cdlemk7 36650 cdlemk12 36652 cdlemkole 36655 cdlemk14 36656 cdlemk15 36657 cdlemk17 36660 cdlemk5u 36663 cdlemk6u 36664 cdlemkuat 36668 cdlemk7u 36672 cdlemk12u 36674 cdlemk37 36716 cdlemk39 36718 cdlemkfid1N 36723 cdlemk47 36751 cdlemk48 36752 cdlemk50 36754 cdlemk51 36755 cdlemk52 36756 cdlemm10N 36921 |
Copyright terms: Public domain | W3C validator |