![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrn1o | Structured version Visualization version GIF version |
Description: A lattice translation is a one-to-one onto function. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrn1o.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrn1o.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrn1o.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrn1o | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 742 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐾 ∈ 𝑉) | |
2 | ltrn1o.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2770 | . . 3 ⊢ (LAut‘𝐾) = (LAut‘𝐾) | |
4 | ltrn1o.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | 2, 3, 4 | ltrnlaut 35924 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ (LAut‘𝐾)) |
6 | ltrn1o.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
7 | 6, 3 | laut1o 35886 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ (LAut‘𝐾)) → 𝐹:𝐵–1-1-onto→𝐵) |
8 | 1, 5, 7 | syl2anc 565 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹:𝐵–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 –1-1-onto→wf1o 6030 ‘cfv 6031 Basecbs 16063 LHypclh 35785 LAutclaut 35786 LTrncltrn 35902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-map 8010 df-laut 35790 df-ldil 35905 df-ltrn 35906 |
This theorem is referenced by: ltrncnvnid 35928 ltrncoidN 35929 ltrnid 35936 ltrncnvatb 35939 ltrncnvel 35943 ltrncoval 35946 ltrncnv 35947 ltrneq2 35949 trlcnv 35967 ltrniotacnvval 36384 cdlemg17h 36470 trlcoabs2N 36524 trlcoat 36525 trlcone 36530 cdlemg47a 36536 cdlemg46 36537 cdlemg47 36538 trljco 36542 tgrpgrplem 36551 tendo0pl 36593 tendoipl 36599 cdlemi2 36621 cdlemk2 36634 cdlemk4 36636 cdlemk8 36640 cdlemkid2 36726 cdlemk45 36749 cdlemk53b 36758 cdlemk53 36759 cdlemk55a 36761 tendocnv 36824 dvhgrp 36910 dvhopN 36919 cdlemn3 37000 cdlemn8 37007 cdlemn9 37008 dihordlem7b 37018 dihopelvalcpre 37051 dihmeetlem1N 37093 dihglblem5apreN 37094 |
Copyright terms: Public domain | W3C validator |