![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelpi | Structured version Visualization version GIF version |
Description: Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelpi | ⊢ <N ⊆ (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lti 9735 | . 2 ⊢ <N = ( E ∩ (N × N)) | |
2 | inss2 3867 | . 2 ⊢ ( E ∩ (N × N)) ⊆ (N × N) | |
3 | 1, 2 | eqsstri 3668 | 1 ⊢ <N ⊆ (N × N) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3606 ⊆ wss 3607 E cep 5057 × cxp 5141 Ncnpi 9704 <N clti 9707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 df-ss 3621 df-lti 9735 |
This theorem is referenced by: ltapi 9763 ltmpi 9764 nlt1pi 9766 indpi 9767 ordpipq 9802 ltsonq 9829 archnq 9840 |
Copyright terms: Public domain | W3C validator |