![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrelnq | Structured version Visualization version GIF version |
Description: Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltrelnq | ⊢ <Q ⊆ (Q × Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ltnq 9778 | . 2 ⊢ <Q = ( <pQ ∩ (Q × Q)) | |
2 | inss2 3867 | . 2 ⊢ ( <pQ ∩ (Q × Q)) ⊆ (Q × Q) | |
3 | 1, 2 | eqsstri 3668 | 1 ⊢ <Q ⊆ (Q × Q) |
Colors of variables: wff setvar class |
Syntax hints: ∩ cin 3606 ⊆ wss 3607 × cxp 5141 <pQ cltpq 9710 Qcnq 9712 <Q cltq 9718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 df-ss 3621 df-ltnq 9778 |
This theorem is referenced by: lterpq 9830 ltanq 9831 ltmnq 9832 ltexnq 9835 ltbtwnnq 9838 ltrnq 9839 prcdnq 9853 prnmadd 9857 genpcd 9866 nqpr 9874 1idpr 9889 prlem934 9893 ltexprlem4 9899 prlem936 9907 reclem2pr 9908 reclem3pr 9909 reclem4pr 9910 |
Copyright terms: Public domain | W3C validator |