![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltrel | Structured version Visualization version GIF version |
Description: 'Less than' is a relation. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltrel | ⊢ Rel < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelxr 10300 | . 2 ⊢ < ⊆ (ℝ* × ℝ*) | |
2 | relxp 5266 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
3 | relss 5346 | . 2 ⊢ ( < ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel < )) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel < |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3721 × cxp 5247 Rel wrel 5254 ℝ*cxr 10274 < clt 10275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-v 3351 df-un 3726 df-in 3728 df-ss 3735 df-pr 4317 df-opab 4845 df-xp 5255 df-rel 5256 df-xr 10279 df-ltxr 10280 |
This theorem is referenced by: dflt2 12185 gtiso 29812 |
Copyright terms: Public domain | W3C validator |