![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltpnf | Structured version Visualization version GIF version |
Description: Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
ltpnf | ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . 4 ⊢ +∞ = +∞ | |
2 | orc 399 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ +∞ = +∞) → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) | |
3 | 1, 2 | mpan2 707 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))) |
4 | 3 | olcd 407 | . 2 ⊢ (𝐴 ∈ ℝ → ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ)))) |
5 | rexr 10123 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
6 | pnfxr 10130 | . . 3 ⊢ +∞ ∈ ℝ* | |
7 | ltxr 11987 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) | |
8 | 5, 6, 7 | sylancl 695 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 < +∞ ↔ ((((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ) ∧ 𝐴 <ℝ +∞) ∨ (𝐴 = -∞ ∧ +∞ = +∞)) ∨ ((𝐴 ∈ ℝ ∧ +∞ = +∞) ∨ (𝐴 = -∞ ∧ +∞ ∈ ℝ))))) |
9 | 4, 8 | mpbird 247 | 1 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ℝcr 9973 <ℝ cltrr 9978 +∞cpnf 10109 -∞cmnf 10110 ℝ*cxr 10111 < clt 10112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-xp 5149 df-pnf 10114 df-xr 10116 df-ltxr 10117 |
This theorem is referenced by: ltpnfd 11993 0ltpnf 11994 xrlttri 12010 xrlttr 12011 xrrebnd 12037 xrre 12038 qbtwnxr 12069 xltnegi 12085 xrinfmsslem 12176 xrub 12180 supxrunb1 12187 supxrunb2 12188 elioc2 12274 elicc2 12276 ioomax 12286 ioopos 12288 elioopnf 12305 elicopnf 12307 difreicc 12342 hashbnd 13163 hashnnn0genn0 13171 hashv01gt1 13173 fprodge0 14768 fprodge1 14770 pcadd 15640 ramubcl 15769 rge0srg 19865 mnfnei 21073 xblss2ps 22253 icopnfcld 22618 iocmnfcld 22619 blcvx 22648 xrtgioo 22656 reconnlem1 22676 xrge0tsms 22684 iccpnfhmeo 22791 ioombl1lem4 23375 icombl1 23377 uniioombllem1 23395 mbfmax 23461 ismbf3d 23466 itg2seq 23554 lhop2 23823 dvfsumlem2 23835 logccv 24454 xrlimcnp 24740 pntleme 25342 upgrfi 26031 topnfbey 27455 isblo3i 27784 htthlem 27902 xlt2addrd 29651 dfrp2 29660 fsumrp0cl 29823 pnfinf 29865 xrge0tsmsd 29913 xrge0slmod 29972 xrge0iifcnv 30107 xrge0iifiso 30109 xrge0iifhom 30111 lmxrge0 30126 esumcst 30253 esumcvgre 30281 voliune 30420 volfiniune 30421 sxbrsigalem0 30461 orvcgteel 30657 dstfrvclim1 30667 itg2addnclem2 33592 asindmre 33625 dvasin 33626 dvacos 33627 rfcnpre3 39506 supxrgere 39862 supxrgelem 39866 xrlexaddrp 39881 infxr 39896 xrpnf 40029 limsupre 40191 limsuppnfdlem 40251 limsuppnflem 40260 liminflelimsupuz 40335 icccncfext 40418 fourierdlem111 40752 fourierdlem113 40754 fouriersw 40766 sge0iunmptlemre 40950 sge0rpcpnf 40956 sge0xaddlem1 40968 meaiuninclem 41015 hoidmvlelem5 41134 ovolval5lem1 41187 pimltpnf 41237 iccpartiltu 41683 |
Copyright terms: Public domain | W3C validator |