![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltp1i | Structured version Visualization version GIF version |
Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.) |
Ref | Expression |
---|---|
ltplus1.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
ltp1i | ⊢ 𝐴 < (𝐴 + 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltplus1.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltp1 11074 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 < (𝐴 + 1) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2140 class class class wbr 4805 (class class class)co 6815 ℝcr 10148 1c1 10150 + caddc 10152 < clt 10287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 |
This theorem is referenced by: ledivp1i 11162 ltdivp1i 11163 1lt2 11407 2lt3 11408 3lt4 11410 4lt5 11413 5lt6 11417 6lt7 11422 7lt8 11428 8lt9 11435 9lt10OLD 11443 9lt10 11886 faclbnd4lem1 13295 axlowdimlem16 26058 poimirlem16 33757 poimirlem17 33758 poimirlem19 33760 poimirlem20 33761 fdc 33873 pellqrex 37964 |
Copyright terms: Public domain | W3C validator |