MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltord1 Structured version   Visualization version   GIF version

Theorem ltord1 10766
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
ltord1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem ltord1
StepHypRef Expression
1 ltord.1 . . 3 (𝑥 = 𝑦𝐴 = 𝐵)
2 ltord.2 . . 3 (𝑥 = 𝐶𝐴 = 𝑀)
3 ltord.3 . . 3 (𝑥 = 𝐷𝐴 = 𝑁)
4 ltord.4 . . 3 𝑆 ⊆ ℝ
5 ltord.5 . . 3 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
6 ltord.6 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
71, 2, 3, 4, 5, 6ltordlem 10765 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
8 eqeq1 2764 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥 = 𝐷𝐶 = 𝐷))
92eqeq1d 2762 . . . . . . . 8 (𝑥 = 𝐶 → (𝐴 = 𝑁𝑀 = 𝑁))
108, 9imbi12d 333 . . . . . . 7 (𝑥 = 𝐶 → ((𝑥 = 𝐷𝐴 = 𝑁) ↔ (𝐶 = 𝐷𝑀 = 𝑁)))
1110, 3vtoclg 3406 . . . . . 6 (𝐶𝑆 → (𝐶 = 𝐷𝑀 = 𝑁))
1211ad2antrl 766 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
131, 3, 2, 4, 5, 6ltordlem 10765 . . . . . 6 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
1413ancom2s 879 . . . . 5 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
1512, 14orim12d 919 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → ((𝐶 = 𝐷𝐷 < 𝐶) → (𝑀 = 𝑁𝑁 < 𝑀)))
1615con3d 148 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (¬ (𝑀 = 𝑁𝑁 < 𝑀) → ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
175ralrimiva 3104 . . . . . 6 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
182eleq1d 2824 . . . . . . 7 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
1918rspccva 3448 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
2017, 19sylan 489 . . . . 5 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
213eleq1d 2824 . . . . . . 7 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2221rspccva 3448 . . . . . 6 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2317, 22sylan 489 . . . . 5 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2420, 23anim12dan 918 . . . 4 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
25 axlttri 10321 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 < 𝑁 ↔ ¬ (𝑀 = 𝑁𝑁 < 𝑀)))
2624, 25syl 17 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 < 𝑁 ↔ ¬ (𝑀 = 𝑁𝑁 < 𝑀)))
274sseli 3740 . . . . 5 (𝐶𝑆𝐶 ∈ ℝ)
284sseli 3740 . . . . 5 (𝐷𝑆𝐷 ∈ ℝ)
29 axlttri 10321 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3027, 28, 29syl2an 495 . . . 4 ((𝐶𝑆𝐷𝑆) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3130adantl 473 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷 ↔ ¬ (𝐶 = 𝐷𝐷 < 𝐶)))
3216, 26, 313imtr4d 283 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 < 𝑁𝐶 < 𝐷))
337, 32impbid 202 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 < 𝐷𝑀 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wral 3050  wss 3715   class class class wbr 4804  cr 10147   < clt 10286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-pre-lttri 10222
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291
This theorem is referenced by:  leord1  10767  ltord2  10769  ltexp2  13128  eflt  15066  tanord1  24503  tanord  24504  monotuz  38026  monotoddzzfi  38027  rpexpmord  38033
  Copyright terms: Public domain W3C validator