![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltnle | Structured version Visualization version GIF version |
Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
ltnle | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lenlt 10154 | . . 3 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) | |
2 | 1 | ancoms 468 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵)) |
3 | 2 | con2bid 343 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 ℝcr 9973 < clt 10112 ≤ cle 10113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-xr 10116 df-le 10118 |
This theorem is referenced by: letric 10175 ltnled 10222 leaddsub 10542 mulge0b 10931 nnnle0 11089 nn0n0n1ge2b 11397 znnnlt1 11442 uzwo 11789 qsqueeze 12070 difreicc 12342 fzp1disj 12437 fzneuz 12459 fznuz 12460 uznfz 12461 difelfznle 12492 nelfzo 12514 ssfzoulel 12602 elfzonelfzo 12610 modfzo0difsn 12782 ssnn0fi 12824 discr1 13040 facdiv 13114 bcval5 13145 ccatsymb 13400 swrdnd 13478 swrdsbslen 13494 swrdspsleq 13495 swrdccat3 13538 repswswrd 13577 cnpart 14024 absmax 14113 rlimrege0 14354 znnenlem 14984 rpnnen2lem12 14998 alzdvds 15089 algcvgblem 15337 prmndvdsfaclt 15482 pcprendvds 15592 pcdvdsb 15620 pcmpt 15643 prmunb 15665 prmreclem2 15668 prmgaplem5 15806 prmgaplem6 15807 prmlem1 15861 prmlem2 15874 lt6abl 18342 metdseq0 22704 xrhmeo 22792 ovolicc2lem3 23333 itg2seq 23554 dvne0 23819 coeeulem 24025 radcnvlt1 24217 argimgt0 24403 cxple2 24488 ressatans 24706 eldmgm 24793 basellem2 24853 issqf 24907 bpos1 25053 bposlem3 25056 bposlem6 25059 pntpbnd2 25321 ostth2lem4 25370 crctcshwlkn0 26769 crctcsh 26772 eucrctshift 27221 ltflcei 33527 poimirlem4 33543 poimirlem13 33552 poimirlem14 33553 poimirlem15 33554 poimirlem31 33570 mblfinlem1 33576 mbfposadd 33587 itgaddnclem2 33599 ftc1anclem1 33615 ftc1anclem5 33619 dvasin 33626 icccncfext 40418 stoweidlem14 40549 stoweidlem34 40569 ltnltne 41638 pfxccat3 41751 pfxccat3a 41754 nnsum4primeseven 42013 nnsum4primesevenALTV 42014 ply1mulgsumlem2 42500 |
Copyright terms: Public domain | W3C validator |