![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltneii | Structured version Visualization version GIF version |
Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
ltneii | ⊢ 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . . 3 ⊢ 𝐴 < 𝐵 | |
3 | 1, 2 | gtneii 10355 | . 2 ⊢ 𝐵 ≠ 𝐴 |
4 | 3 | necomi 2997 | 1 ⊢ 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2145 ≠ wne 2943 class class class wbr 4787 ℝcr 10141 < clt 10280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-resscn 10199 ax-pre-lttri 10216 ax-pre-lttrn 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-po 5171 df-so 5172 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-ltxr 10285 |
This theorem is referenced by: 1ne2 11447 f1oun2prg 13871 geo2sum 14811 3dvds 15261 3dvdsOLD 15262 plusgndxnmulrndx 16206 basendxnmulrndx 16207 slotsbhcdif 16288 oppchomfval 16581 oppcbas 16585 rescbas 16696 rescabs 16700 odubas 17341 opprlem 18836 rmodislmod 19141 srasca 19396 sravsca 19397 opsrbaslem 19692 opsrbaslemOLD 19693 cnfldfun 19973 zlmlem 20080 zlmsca 20084 znbaslem 20101 znbaslemOLD 20102 thlbas 20257 thlle 20258 matbas 20436 matplusg 20437 tuslem 22291 setsmsbas 22500 tnglem 22664 ppiub 25150 2lgslem3 25350 2lgslem4 25352 ttgval 25976 ttglem 25977 slotsbaseefdif 26094 structvtxvallem 26130 usgrexmpldifpr 26373 upgr4cycl4dv4e 27365 konigsbergiedgw 27428 konigsberglem3 27434 konigsberglem5 27436 ex-dif 27622 ex-id 27633 ex-fv 27642 ex-mod 27648 resvbas 30172 resvplusg 30173 resvmulr 30175 hlhilslem 37748 rabren3dioph 37905 xrlexaddrp 40081 fourierdlem102 40939 fourierdlem114 40951 fouriersw 40962 nnsum4primesodd 42209 nnsum4primesoddALTV 42210 zlmodzxznm 42811 2p2ne5 43072 |
Copyright terms: Public domain | W3C validator |