![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltltncvr | Structured version Visualization version GIF version |
Description: A chained strong ordering is not a covers relation. (Contributed by NM, 18-Jun-2012.) |
Ref | Expression |
---|---|
ltltncvr.b | ⊢ 𝐵 = (Base‘𝐾) |
ltltncvr.s | ⊢ < = (lt‘𝐾) |
ltltncvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
ltltncvr | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 807 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝐾 ∈ 𝐴) | |
2 | simplr1 1261 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝑋 ∈ 𝐵) | |
3 | simplr3 1265 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝑍 ∈ 𝐵) | |
4 | simplr2 1263 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝑌 ∈ 𝐵) | |
5 | simpr 479 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → 𝑋𝐶𝑍) | |
6 | ltltncvr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
7 | ltltncvr.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
8 | ltltncvr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
9 | 6, 7, 8 | cvrnbtwn 35061 | . . . 4 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑍) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍)) |
10 | 1, 2, 3, 4, 5, 9 | syl131anc 1490 | . . 3 ⊢ (((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑋𝐶𝑍) → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍)) |
11 | 10 | ex 449 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑍 → ¬ (𝑋 < 𝑌 ∧ 𝑌 < 𝑍))) |
12 | 11 | con2d 129 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 < 𝑌 ∧ 𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 Basecbs 16059 ltcplt 17142 ⋖ ccvr 35052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-covers 35056 |
This theorem is referenced by: ltcvrntr 35213 |
Copyright terms: Public domain | W3C validator |