MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltgov Structured version   Visualization version   GIF version

Theorem ltgov 25713
Description: Strict "shorter than" geometric relation between segments. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
legval.p 𝑃 = (Base‘𝐺)
legval.d = (dist‘𝐺)
legval.i 𝐼 = (Itv‘𝐺)
legval.l = (≤G‘𝐺)
legval.g (𝜑𝐺 ∈ TarskiG)
legso.a 𝐸 = ( “ (𝑃 × 𝑃))
legso.f (𝜑 → Fun )
legso.l < = (( 𝐸) ∖ I )
legso.d (𝜑 → (𝑃 × 𝑃) ⊆ dom )
ltgov.a (𝜑𝐴𝑃)
ltgov.b (𝜑𝐵𝑃)
Assertion
Ref Expression
ltgov (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))

Proof of Theorem ltgov
StepHypRef Expression
1 legso.l . . . . 5 < = (( 𝐸) ∖ I )
21breqi 4792 . . . 4 ((𝐴 𝐵) < (𝐶 𝐷) ↔ (𝐴 𝐵)(( 𝐸) ∖ I )(𝐶 𝐷))
3 brdif 4839 . . . 4 ((𝐴 𝐵)(( 𝐸) ∖ I )(𝐶 𝐷) ↔ ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
42, 3bitri 264 . . 3 ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
5 ovex 6823 . . . . 5 (𝐶 𝐷) ∈ V
65brres 5543 . . . 4 ((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ∈ 𝐸))
76anbi1i 610 . . 3 (((𝐴 𝐵)( 𝐸)(𝐶 𝐷) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ (((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ∈ 𝐸) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)))
8 anass 459 . . 3 ((((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ∈ 𝐸) ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
94, 7, 83bitri 286 . 2 ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
105ideq 5413 . . . . 5 ((𝐴 𝐵) I (𝐶 𝐷) ↔ (𝐴 𝐵) = (𝐶 𝐷))
1110necon3bbii 2990 . . . 4 (¬ (𝐴 𝐵) I (𝐶 𝐷) ↔ (𝐴 𝐵) ≠ (𝐶 𝐷))
12 ltgov.a . . . . . . 7 (𝜑𝐴𝑃)
13 ltgov.b . . . . . . 7 (𝜑𝐵𝑃)
14 legso.f . . . . . . 7 (𝜑 → Fun )
15 legso.d . . . . . . 7 (𝜑 → (𝑃 × 𝑃) ⊆ dom )
1612, 13, 14, 15elovimad 6838 . . . . . 6 (𝜑 → (𝐴 𝐵) ∈ ( “ (𝑃 × 𝑃)))
17 legso.a . . . . . 6 𝐸 = ( “ (𝑃 × 𝑃))
1816, 17syl6eleqr 2861 . . . . 5 (𝜑 → (𝐴 𝐵) ∈ 𝐸)
1918biantrurd 522 . . . 4 (𝜑 → (¬ (𝐴 𝐵) I (𝐶 𝐷) ↔ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))))
2011, 19syl5rbbr 275 . . 3 (𝜑 → (((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷)) ↔ (𝐴 𝐵) ≠ (𝐶 𝐷)))
2120anbi2d 614 . 2 (𝜑 → (((𝐴 𝐵) (𝐶 𝐷) ∧ ((𝐴 𝐵) ∈ 𝐸 ∧ ¬ (𝐴 𝐵) I (𝐶 𝐷))) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
229, 21syl5bb 272 1 (𝜑 → ((𝐴 𝐵) < (𝐶 𝐷) ↔ ((𝐴 𝐵) (𝐶 𝐷) ∧ (𝐴 𝐵) ≠ (𝐶 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  cdif 3720  wss 3723   class class class wbr 4786   I cid 5156   × cxp 5247  dom cdm 5249  cres 5251  cima 5252  Fun wfun 6025  cfv 6031  (class class class)co 6793  Basecbs 16064  distcds 16158  TarskiGcstrkg 25550  Itvcitv 25556  ≤Gcleg 25698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-fv 6039  df-ov 6796
This theorem is referenced by:  legov3  25714  legso  25715
  Copyright terms: Public domain W3C validator