MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem4 Structured version   Visualization version   GIF version

Theorem ltexprlem4 10073
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 6-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem4 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑧
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem4
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 prnmax 10029 . . . . . . . . 9 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑤𝐵 (𝑦 +Q 𝑥) <Q 𝑤)
2 df-rex 3056 . . . . . . . . 9 (∃𝑤𝐵 (𝑦 +Q 𝑥) <Q 𝑤 ↔ ∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤))
31, 2sylib 208 . . . . . . . 8 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤))
4 ltrelnq 9960 . . . . . . . . . . . . . . . . . . . 20 <Q ⊆ (Q × Q)
54brel 5325 . . . . . . . . . . . . . . . . . . 19 ((𝑦 +Q 𝑥) <Q 𝑤 → ((𝑦 +Q 𝑥) ∈ Q𝑤Q))
65simpld 477 . . . . . . . . . . . . . . . . . 18 ((𝑦 +Q 𝑥) <Q 𝑤 → (𝑦 +Q 𝑥) ∈ Q)
7 addnqf 9982 . . . . . . . . . . . . . . . . . . . 20 +Q :(Q × Q)⟶Q
87fdmi 6213 . . . . . . . . . . . . . . . . . . 19 dom +Q = (Q × Q)
9 0nnq 9958 . . . . . . . . . . . . . . . . . . 19 ¬ ∅ ∈ Q
108, 9ndmovrcl 6986 . . . . . . . . . . . . . . . . . 18 ((𝑦 +Q 𝑥) ∈ Q → (𝑦Q𝑥Q))
116, 10syl 17 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑥) <Q 𝑤 → (𝑦Q𝑥Q))
12 ltaddnq 10008 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑥Q) → 𝑦 <Q (𝑦 +Q 𝑥))
13 ltsonq 10003 . . . . . . . . . . . . . . . . . . 19 <Q Or Q
1413, 4sotri 5681 . . . . . . . . . . . . . . . . . 18 ((𝑦 <Q (𝑦 +Q 𝑥) ∧ (𝑦 +Q 𝑥) <Q 𝑤) → 𝑦 <Q 𝑤)
1512, 14sylan 489 . . . . . . . . . . . . . . . . 17 (((𝑦Q𝑥Q) ∧ (𝑦 +Q 𝑥) <Q 𝑤) → 𝑦 <Q 𝑤)
1611, 15mpancom 706 . . . . . . . . . . . . . . . 16 ((𝑦 +Q 𝑥) <Q 𝑤𝑦 <Q 𝑤)
174brel 5325 . . . . . . . . . . . . . . . . . 18 (𝑦 <Q 𝑤 → (𝑦Q𝑤Q))
1817simprd 482 . . . . . . . . . . . . . . . . 17 (𝑦 <Q 𝑤𝑤Q)
19 ltexnq 10009 . . . . . . . . . . . . . . . . . 18 (𝑤Q → (𝑦 <Q 𝑤 ↔ ∃𝑧(𝑦 +Q 𝑧) = 𝑤))
2019biimpd 219 . . . . . . . . . . . . . . . . 17 (𝑤Q → (𝑦 <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤))
2118, 20mpcom 38 . . . . . . . . . . . . . . . 16 (𝑦 <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
2216, 21syl 17 . . . . . . . . . . . . . . 15 ((𝑦 +Q 𝑥) <Q 𝑤 → ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
23 eqcom 2767 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑦 +Q 𝑧) ↔ (𝑦 +Q 𝑧) = 𝑤)
2423exbii 1923 . . . . . . . . . . . . . . 15 (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ↔ ∃𝑧(𝑦 +Q 𝑧) = 𝑤)
2522, 24sylibr 224 . . . . . . . . . . . . . 14 ((𝑦 +Q 𝑥) <Q 𝑤 → ∃𝑧 𝑤 = (𝑦 +Q 𝑧))
2625ancri 576 . . . . . . . . . . . . 13 ((𝑦 +Q 𝑥) <Q 𝑤 → (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤))
2726anim2i 594 . . . . . . . . . . . 12 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → (𝑤𝐵 ∧ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
28 an12 873 . . . . . . . . . . . 12 ((∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ (𝑤𝐵 ∧ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
2927, 28sylibr 224 . . . . . . . . . . 11 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
30 19.41v 2026 . . . . . . . . . . 11 (∃𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ (∃𝑧 𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3129, 30sylibr 224 . . . . . . . . . 10 ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3231eximi 1911 . . . . . . . . 9 (∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑤𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
33 excom 2191 . . . . . . . . 9 (∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ ∃𝑤𝑧(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
3432, 33sylibr 224 . . . . . . . 8 (∃𝑤(𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) → ∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)))
35 ovex 6842 . . . . . . . . . . 11 (𝑦 +Q 𝑧) ∈ V
36 eleq1 2827 . . . . . . . . . . . 12 (𝑤 = (𝑦 +Q 𝑧) → (𝑤𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
37 breq2 4808 . . . . . . . . . . . 12 (𝑤 = (𝑦 +Q 𝑧) → ((𝑦 +Q 𝑥) <Q 𝑤 ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
3836, 37anbi12d 749 . . . . . . . . . . 11 (𝑤 = (𝑦 +Q 𝑧) → ((𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤) ↔ ((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧))))
3935, 38ceqsexv 3382 . . . . . . . . . 10 (∃𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) ↔ ((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
40 ltanq 10005 . . . . . . . . . . . 12 (𝑦Q → (𝑥 <Q 𝑧 ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)))
418, 4, 9, 40ndmovordi 6991 . . . . . . . . . . 11 ((𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧) → 𝑥 <Q 𝑧)
4241anim2i 594 . . . . . . . . . 10 (((𝑦 +Q 𝑧) ∈ 𝐵 ∧ (𝑦 +Q 𝑥) <Q (𝑦 +Q 𝑧)) → ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4339, 42sylbi 207 . . . . . . . . 9 (∃𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) → ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4443eximi 1911 . . . . . . . 8 (∃𝑧𝑤(𝑤 = (𝑦 +Q 𝑧) ∧ (𝑤𝐵 ∧ (𝑦 +Q 𝑥) <Q 𝑤)) → ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
453, 34, 443syl 18 . . . . . . 7 ((𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))
4645anim2i 594 . . . . . 6 ((¬ 𝑦𝐴 ∧ (𝐵P ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
4746an12s 878 . . . . 5 ((𝐵P ∧ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
48 19.42v 2030 . . . . 5 (∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)) ↔ (¬ 𝑦𝐴 ∧ ∃𝑧((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
4947, 48sylibr 224 . . . 4 ((𝐵P ∧ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) → ∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
5049ex 449 . . 3 (𝐵P → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))))
5150eximdv 1995 . 2 (𝐵P → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧))))
52 ltexprlem.1 . . 3 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
5352abeq2i 2873 . 2 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
54 vex 3343 . . . . . . 7 𝑧 ∈ V
55 oveq2 6822 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦 +Q 𝑥) = (𝑦 +Q 𝑧))
5655eleq1d 2824 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝑦 +Q 𝑥) ∈ 𝐵 ↔ (𝑦 +Q 𝑧) ∈ 𝐵))
5756anbi2d 742 . . . . . . . 8 (𝑥 = 𝑧 → ((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
5857exbidv 1999 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵)))
5954, 58, 52elab2 3494 . . . . . 6 (𝑧𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵))
6059anbi1i 733 . . . . 5 ((𝑧𝐶𝑥 <Q 𝑧) ↔ (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧))
61 19.41v 2026 . . . . 5 (∃𝑦((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ (∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧))
62 anass 684 . . . . . 6 (((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ (¬ 𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6362exbii 1923 . . . . 5 (∃𝑦((¬ 𝑦𝐴 ∧ (𝑦 +Q 𝑧) ∈ 𝐵) ∧ 𝑥 <Q 𝑧) ↔ ∃𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6460, 61, 633bitr2i 288 . . . 4 ((𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6564exbii 1923 . . 3 (∃𝑧(𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑧𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
66 excom 2191 . . 3 (∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)) ↔ ∃𝑧𝑦𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6765, 66bitr4i 267 . 2 (∃𝑧(𝑧𝐶𝑥 <Q 𝑧) ↔ ∃𝑦𝑧𝑦𝐴 ∧ ((𝑦 +Q 𝑧) ∈ 𝐵𝑥 <Q 𝑧)))
6851, 53, 673imtr4g 285 1 (𝐵P → (𝑥𝐶 → ∃𝑧(𝑧𝐶𝑥 <Q 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1632  wex 1853  wcel 2139  {cab 2746  wrex 3051   class class class wbr 4804   × cxp 5264  (class class class)co 6814  Qcnq 9886   +Q cplq 9889   <Q cltq 9892  Pcnp 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-omul 7735  df-er 7913  df-ni 9906  df-pli 9907  df-mi 9908  df-lti 9909  df-plpq 9942  df-mpq 9943  df-ltpq 9944  df-enq 9945  df-nq 9946  df-erq 9947  df-plq 9948  df-mq 9949  df-1nq 9950  df-ltnq 9952  df-np 10015
This theorem is referenced by:  ltexprlem5  10074
  Copyright terms: Public domain W3C validator