![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexprlem2 | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
Ref | Expression |
---|---|
ltexprlem2 | ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
2 | 1 | abeq2i 2764 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
3 | elprnq 9851 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 +Q 𝑥) ∈ Q) | |
4 | addnqf 9808 | . . . . . . . . . . 11 ⊢ +Q :(Q × Q)⟶Q | |
5 | 4 | fdmi 6090 | . . . . . . . . . 10 ⊢ dom +Q = (Q × Q) |
6 | 0nnq 9784 | . . . . . . . . . 10 ⊢ ¬ ∅ ∈ Q | |
7 | 5, 6 | ndmovrcl 6862 | . . . . . . . . 9 ⊢ ((𝑦 +Q 𝑥) ∈ Q → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
8 | 3, 7 | syl 17 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑦 ∈ Q ∧ 𝑥 ∈ Q)) |
9 | ltaddnq 9834 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) | |
10 | 9 | ancoms 468 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
11 | addcomnq 9811 | . . . . . . . . . 10 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
12 | 10, 11 | syl6breq 4726 | . . . . . . . . 9 ⊢ ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑦 +Q 𝑥)) |
13 | prcdnq 9853 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → (𝑥 <Q (𝑦 +Q 𝑥) → 𝑥 ∈ 𝐵)) | |
14 | 12, 13 | syl5 34 | . . . . . . . 8 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → ((𝑦 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 ∈ 𝐵)) |
15 | 8, 14 | mpd 15 | . . . . . . 7 ⊢ ((𝐵 ∈ P ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵) |
16 | 15 | ex 449 | . . . . . 6 ⊢ (𝐵 ∈ P → ((𝑦 +Q 𝑥) ∈ 𝐵 → 𝑥 ∈ 𝐵)) |
17 | 16 | adantld 482 | . . . . 5 ⊢ (𝐵 ∈ P → ((¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
18 | 17 | exlimdv 1901 | . . . 4 ⊢ (𝐵 ∈ P → (∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) → 𝑥 ∈ 𝐵)) |
19 | 2, 18 | syl5bi 232 | . . 3 ⊢ (𝐵 ∈ P → (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐵)) |
20 | 19 | ssrdv 3642 | . 2 ⊢ (𝐵 ∈ P → 𝐶 ⊆ 𝐵) |
21 | prpssnq 9850 | . 2 ⊢ (𝐵 ∈ P → 𝐵 ⊊ Q) | |
22 | 20, 21 | sspsstrd 3748 | 1 ⊢ (𝐵 ∈ P → 𝐶 ⊊ Q) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 ⊊ wpss 3608 class class class wbr 4685 × cxp 5141 (class class class)co 6690 Qcnq 9712 +Q cplq 9715 <Q cltq 9718 Pcnp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-omul 7610 df-er 7787 df-ni 9732 df-pli 9733 df-mi 9734 df-lti 9735 df-plpq 9768 df-mpq 9769 df-ltpq 9770 df-enq 9771 df-nq 9772 df-erq 9773 df-plq 9774 df-mq 9775 df-1nq 9776 df-ltnq 9778 df-np 9841 |
This theorem is referenced by: ltexprlem5 9900 |
Copyright terms: Public domain | W3C validator |