![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltexprlem1 | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
Ref | Expression |
---|---|
ltexprlem1 | ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnel 4072 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) | |
2 | prnmadd 9857 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ 𝑦 ∈ 𝐵) → ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵) | |
3 | 2 | anim2i 592 | . . . . . . . 8 ⊢ ((¬ 𝑦 ∈ 𝐴 ∧ (𝐵 ∈ P ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)) |
4 | 19.42v 1921 | . . . . . . . 8 ⊢ (∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)) | |
5 | 3, 4 | sylibr 224 | . . . . . . 7 ⊢ ((¬ 𝑦 ∈ 𝐴 ∧ (𝐵 ∈ P ∧ 𝑦 ∈ 𝐵)) → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
6 | 5 | exp32 630 | . . . . . 6 ⊢ (¬ 𝑦 ∈ 𝐴 → (𝐵 ∈ P → (𝑦 ∈ 𝐵 → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))) |
7 | 6 | com3l 89 | . . . . 5 ⊢ (𝐵 ∈ P → (𝑦 ∈ 𝐵 → (¬ 𝑦 ∈ 𝐴 → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))) |
8 | 7 | impd 446 | . . . 4 ⊢ (𝐵 ∈ P → ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴) → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
9 | 8 | eximdv 1886 | . . 3 ⊢ (𝐵 ∈ P → (∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴) → ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
10 | 1, 9 | syl5 34 | . 2 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
11 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
12 | 11 | abeq2i 2764 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
13 | 12 | exbii 1814 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 ↔ ∃𝑥∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
14 | n0 3964 | . . 3 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐶) | |
15 | excom 2082 | . . 3 ⊢ (∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑥∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) | |
16 | 13, 14, 15 | 3bitr4i 292 | . 2 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
17 | 10, 16 | syl6ibr 242 | 1 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 {cab 2637 ≠ wne 2823 ⊊ wpss 3608 ∅c0 3948 (class class class)co 6690 +Q cplq 9715 Pcnp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-omul 7610 df-er 7787 df-ni 9732 df-pli 9733 df-mi 9734 df-lti 9735 df-plpq 9768 df-mpq 9769 df-ltpq 9770 df-enq 9771 df-nq 9772 df-erq 9773 df-plq 9774 df-mq 9775 df-1nq 9776 df-ltnq 9778 df-np 9841 |
This theorem is referenced by: ltexprlem5 9900 |
Copyright terms: Public domain | W3C validator |