MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpri Structured version   Visualization version   GIF version

Theorem ltexpri 9809
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 9764 . . 3 <P ⊆ (P × P)
21brel 5128 . 2 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltprord 9796 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))
4 oveq2 6612 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧))
54eleq1d 2683 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵))
65anbi2d 739 . . . . . . . . 9 (𝑦 = 𝑧 → ((¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
76exbidv 1847 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
87cbvabv 2744 . . . . . . 7 {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)}
98ltexprlem5 9806 . . . . . 6 ((𝐵P𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
109adantll 749 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
118ltexprlem6 9807 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵)
128ltexprlem7 9808 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1311, 12eqssd 3600 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)
14 oveq2 6612 . . . . . . 7 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1514eqeq1d 2623 . . . . . 6 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵))
1615rspcev 3295 . . . . 5 (({𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1710, 13, 16syl2anc 692 . . . 4 (((𝐴P𝐵P) ∧ 𝐴𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1817ex 450 . . 3 ((𝐴P𝐵P) → (𝐴𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
193, 18sylbid 230 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
202, 19mpcom 38 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wrex 2908  wpss 3556   class class class wbr 4613  (class class class)co 6604   +Q cplq 9621  Pcnp 9625   +P cpp 9627  <P cltp 9629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ni 9638  df-pli 9639  df-mi 9640  df-lti 9641  df-plpq 9674  df-mpq 9675  df-ltpq 9676  df-enq 9677  df-nq 9678  df-erq 9679  df-plq 9680  df-mq 9681  df-1nq 9682  df-rq 9683  df-ltnq 9684  df-np 9747  df-plp 9749  df-ltp 9751
This theorem is referenced by:  ltaprlem  9810  recexsrlem  9868  mulgt0sr  9870  map2psrpr  9875
  Copyright terms: Public domain W3C validator