MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpri Structured version   Visualization version   GIF version

Theorem ltexpri 10049
Description: Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpri (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpri
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelpr 10004 . . 3 <P ⊆ (P × P)
21brel 5317 . 2 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltprord 10036 . . 3 ((𝐴P𝐵P) → (𝐴<P 𝐵𝐴𝐵))
4 oveq2 6813 . . . . . . . . . . 11 (𝑦 = 𝑧 → (𝑤 +Q 𝑦) = (𝑤 +Q 𝑧))
54eleq1d 2816 . . . . . . . . . 10 (𝑦 = 𝑧 → ((𝑤 +Q 𝑦) ∈ 𝐵 ↔ (𝑤 +Q 𝑧) ∈ 𝐵))
65anbi2d 742 . . . . . . . . 9 (𝑦 = 𝑧 → ((¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ (¬ 𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
76exbidv 1991 . . . . . . . 8 (𝑦 = 𝑧 → (∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵) ↔ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)))
87cbvabv 2877 . . . . . . 7 {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} = {𝑧 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑧) ∈ 𝐵)}
98ltexprlem5 10046 . . . . . 6 ((𝐵P𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
109adantll 752 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P)
118ltexprlem6 10047 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) ⊆ 𝐵)
128ltexprlem7 10048 . . . . . 6 (((𝐴P𝐵P) ∧ 𝐴𝐵) → 𝐵 ⊆ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1311, 12eqssd 3753 . . . . 5 (((𝐴P𝐵P) ∧ 𝐴𝐵) → (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵)
14 oveq2 6813 . . . . . . 7 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → (𝐴 +P 𝑥) = (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}))
1514eqeq1d 2754 . . . . . 6 (𝑥 = {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} → ((𝐴 +P 𝑥) = 𝐵 ↔ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵))
1615rspcev 3441 . . . . 5 (({𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)} ∈ P ∧ (𝐴 +P {𝑦 ∣ ∃𝑤𝑤𝐴 ∧ (𝑤 +Q 𝑦) ∈ 𝐵)}) = 𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1710, 13, 16syl2anc 696 . . . 4 (((𝐴P𝐵P) ∧ 𝐴𝐵) → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
1817ex 449 . . 3 ((𝐴P𝐵P) → (𝐴𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
193, 18sylbid 230 . 2 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵))
202, 19mpcom 38 1 (𝐴<P 𝐵 → ∃𝑥P (𝐴 +P 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1624  wex 1845  wcel 2131  {cab 2738  wrex 3043  wpss 3708   class class class wbr 4796  (class class class)co 6805   +Q cplq 9861  Pcnp 9865   +P cpp 9867  <P cltp 9869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-omul 7726  df-er 7903  df-ni 9878  df-pli 9879  df-mi 9880  df-lti 9881  df-plpq 9914  df-mpq 9915  df-ltpq 9916  df-enq 9917  df-nq 9918  df-erq 9919  df-plq 9920  df-mq 9921  df-1nq 9922  df-rq 9923  df-ltnq 9924  df-np 9987  df-plp 9989  df-ltp 9991
This theorem is referenced by:  ltaprlem  10050  recexsrlem  10108  mulgt0sr  10110  map2psrpr  10115
  Copyright terms: Public domain W3C validator