MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexp2 Structured version   Visualization version   GIF version

Theorem ltexp2 12954
Description: Ordering law for exponentiation. (Contributed by NM, 2-Aug-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
ltexp2 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))

Proof of Theorem ltexp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6698 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
2 oveq2 6698 . . . . . 6 (𝑥 = 𝑀 → (𝐴𝑥) = (𝐴𝑀))
3 oveq2 6698 . . . . . 6 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
4 zssre 11422 . . . . . 6 ℤ ⊆ ℝ
5 simpl 472 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
6 0red 10079 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
7 1red 10093 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
8 0lt1 10588 . . . . . . . . . . 11 0 < 1
98a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
10 simpr 476 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
116, 7, 5, 9, 10lttrd 10236 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
125, 11elrpd 11907 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
13 rpexpcl 12919 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1412, 13sylan 487 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ+)
1514rpred 11910 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑥 ∈ ℤ) → (𝐴𝑥) ∈ ℝ)
16 simpll 805 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐴 ∈ ℝ)
17 simprl 809 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ)
18 simprr 811 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ)
19 simplr 807 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 1 < 𝐴)
20 ltexp2a 12952 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (1 < 𝐴𝑥 < 𝑦)) → (𝐴𝑥) < (𝐴𝑦))
2120expr 642 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ 1 < 𝐴) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
2216, 17, 18, 19, 21syl31anc 1369 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 < 𝑦 → (𝐴𝑥) < (𝐴𝑦)))
231, 2, 3, 4, 15, 22ltord1 10592 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
2423ancom2s 861 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
2524exp43 639 . . 3 (𝐴 ∈ ℝ → (1 < 𝐴 → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁))))))
2625com24 95 . 2 (𝐴 ∈ ℝ → (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (1 < 𝐴 → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁))))))
27263imp1 1302 1 (((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 1 < 𝐴) → (𝑀 < 𝑁 ↔ (𝐴𝑀) < (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wcel 2030   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   < clt 10112  cz 11415  +crp 11870  cexp 12900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901
This theorem is referenced by:  leexp2  12955  ltexp2r  12957  ltexp2d  13078
  Copyright terms: Public domain W3C validator