Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltcvrntr Structured version   Visualization version   GIF version

Theorem ltcvrntr 35232
Description: Non-transitive condition for the covers relation. (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
ltltncvr.b 𝐵 = (Base‘𝐾)
ltltncvr.s < = (lt‘𝐾)
ltltncvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
ltcvrntr ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))

Proof of Theorem ltcvrntr
StepHypRef Expression
1 ltltncvr.b . . . . 5 𝐵 = (Base‘𝐾)
2 ltltncvr.s . . . . 5 < = (lt‘𝐾)
3 ltltncvr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 35079 . . . 4 (((𝐾𝐴𝑌𝐵𝑍𝐵) ∧ 𝑌𝐶𝑍) → 𝑌 < 𝑍)
54ex 397 . . 3 ((𝐾𝐴𝑌𝐵𝑍𝐵) → (𝑌𝐶𝑍𝑌 < 𝑍))
653adant3r1 1197 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌𝐶𝑍𝑌 < 𝑍))
71, 2, 3ltltncvr 35231 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → ¬ 𝑋𝐶𝑍))
86, 7sylan2d 592 1 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  Basecbs 16064  ltcplt 17149  ccvr 35071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-covers 35075
This theorem is referenced by:  cvrntr  35233
  Copyright terms: Public domain W3C validator