MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbwe Structured version   Visualization version   GIF version

Theorem ltbwe 19453
Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
ltbwe.w (𝜑𝑇 We 𝐼)
Assertion
Ref Expression
ltbwe (𝜑𝐶 We 𝐷)
Distinct variable groups:   ,𝐼   𝜑,
Allowed substitution hints:   𝐶()   𝐷()   𝑇()   𝑉()   𝑊()

Proof of Theorem ltbwe
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2620 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2 breq1 4647 . . . . . 6 ( = 𝑥 → ( finSupp 0 ↔ 𝑥 finSupp 0))
32cbvrabv 3194 . . . . 5 { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0} = {𝑥 ∈ (ℕ0𝑚 𝐼) ∣ 𝑥 finSupp 0}
4 ltbwe.w . . . . 5 (𝜑𝑇 We 𝐼)
5 nn0uz 11707 . . . . . 6 0 = (ℤ‘0)
6 ltweuz 12743 . . . . . . 7 < We (ℤ‘0)
7 weeq2 5093 . . . . . . 7 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
86, 7mpbiri 248 . . . . . 6 (ℕ0 = (ℤ‘0) → < We ℕ0)
95, 8mp1i 13 . . . . 5 (𝜑 → < We ℕ0)
10 0nn0 11292 . . . . . 6 0 ∈ ℕ0
11 ne0i 3913 . . . . . 6 (0 ∈ ℕ0 → ℕ0 ≠ ∅)
1210, 11mp1i 13 . . . . 5 (𝜑 → ℕ0 ≠ ∅)
13 eqid 2620 . . . . 5 OrdIso(𝑇, 𝐼) = OrdIso(𝑇, 𝐼)
14 0z 11373 . . . . . . 7 0 ∈ ℤ
15 hashgval2 13150 . . . . . . 7 (# ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
1614, 15om2uzoi 12737 . . . . . 6 (# ↾ ω) = OrdIso( < , (ℤ‘0))
17 oieq2 8403 . . . . . . 7 (ℕ0 = (ℤ‘0) → OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0)))
185, 17ax-mp 5 . . . . . 6 OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0))
1916, 18eqtr4i 2645 . . . . 5 (# ↾ ω) = OrdIso( < , ℕ0)
20 peano1 7070 . . . . . . 7 ∅ ∈ ω
21 fvres 6194 . . . . . . 7 (∅ ∈ ω → ((# ↾ ω)‘∅) = (#‘∅))
2220, 21ax-mp 5 . . . . . 6 ((# ↾ ω)‘∅) = (#‘∅)
23 hash0 13141 . . . . . 6 (#‘∅) = 0
2422, 23eqtr2i 2643 . . . . 5 0 = ((# ↾ ω)‘∅)
251, 3, 4, 9, 12, 13, 19, 24wemapwe 8579 . . . 4 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0})
26 ltbval.d . . . . . 6 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
27 elmapfun 7866 . . . . . . . . . 10 ( ∈ (ℕ0𝑚 𝐼) → Fun )
2827adantl 482 . . . . . . . . 9 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → Fun )
29 simpr 477 . . . . . . . . 9 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → ∈ (ℕ0𝑚 𝐼))
30 c0ex 10019 . . . . . . . . . 10 0 ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → 0 ∈ V)
32 funisfsupp 8265 . . . . . . . . 9 ((Fun ∈ (ℕ0𝑚 𝐼) ∧ 0 ∈ V) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
3328, 29, 31, 32syl3anc 1324 . . . . . . . 8 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
34 ltbval.i . . . . . . . . 9 (𝜑𝐼𝑉)
35 elmapi 7864 . . . . . . . . 9 ( ∈ (ℕ0𝑚 𝐼) → :𝐼⟶ℕ0)
36 frnnn0supp 11334 . . . . . . . . . 10 ((𝐼𝑉:𝐼⟶ℕ0) → ( supp 0) = ( “ ℕ))
3736eleq1d 2684 . . . . . . . . 9 ((𝐼𝑉:𝐼⟶ℕ0) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3834, 35, 37syl2an 494 . . . . . . . 8 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3933, 38bitr2d 269 . . . . . . 7 ((𝜑 ∈ (ℕ0𝑚 𝐼)) → (( “ ℕ) ∈ Fin ↔ finSupp 0))
4039rabbidva 3183 . . . . . 6 (𝜑 → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0})
4126, 40syl5eq 2666 . . . . 5 (𝜑𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0})
42 weeq2 5093 . . . . 5 (𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0} → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0}))
4341, 42syl 17 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0𝑚 𝐼) ∣ finSupp 0}))
4425, 43mpbird 247 . . 3 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷)
45 weinxp 5176 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
4644, 45sylib 208 . 2 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
47 ltbval.c . . . . 5 𝐶 = (𝑇 <bag 𝐼)
48 ltbval.t . . . . 5 (𝜑𝑇𝑊)
4947, 26, 34, 48ltbval 19452 . . . 4 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
50 df-xp 5110 . . . . . . 7 (𝐷 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)}
51 vex 3198 . . . . . . . . 9 𝑥 ∈ V
52 vex 3198 . . . . . . . . 9 𝑦 ∈ V
5351, 52prss 4342 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
5453opabbii 4708 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷}
5550, 54eqtr2i 2643 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} = (𝐷 × 𝐷)
5655ineq1i 3802 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))})
57 inopab 5241 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
58 incom 3797 . . . . 5 ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
5956, 57, 583eqtr3i 2650 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
6049, 59syl6eq 2670 . . 3 (𝜑𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)))
61 weeq1 5092 . . 3 (𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6260, 61syl 17 . 2 (𝜑 → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6346, 62mpbird 247 1 (𝜑𝐶 We 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  {crab 2913  Vcvv 3195  cin 3566  wss 3567  c0 3907  {cpr 4170   class class class wbr 4644  {copab 4703   We wwe 5062   × cxp 5102  ccnv 5103  cres 5106  cima 5107  Fun wfun 5870  wf 5872  cfv 5876  (class class class)co 6635  ωcom 7050   supp csupp 7280  𝑚 cmap 7842  Fincfn 7940   finSupp cfsupp 8260  OrdIsocoi 8399  0cc0 9921   < clt 10059  cn 11005  0cn0 11277  cuz 11672  #chash 13100   <bag cltb 19335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-seqom 7528  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-oexp 7551  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-oi 8400  df-cnf 8544  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-xnn0 11349  df-z 11363  df-uz 11673  df-fz 12312  df-hash 13101  df-ltbag 19340
This theorem is referenced by:  opsrtoslem2  19466
  Copyright terms: Public domain W3C validator