MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbval Structured version   Visualization version   GIF version

Theorem ltbval 19693
Description: Value of the well-order on finite bags. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
Assertion
Ref Expression
ltbval (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
Distinct variable groups:   𝑥,𝑦,𝐷   𝑤,,𝑥,𝑦,𝑧,𝐼   𝜑,,𝑥,𝑦   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤,)   𝐷(𝑧,𝑤,)   𝑇()   𝑉(𝑥,𝑦,𝑧,𝑤,)   𝑊(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem ltbval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltbval.c . 2 𝐶 = (𝑇 <bag 𝐼)
2 ltbval.t . . 3 (𝜑𝑇𝑊)
3 ltbval.i . . 3 (𝜑𝐼𝑉)
4 elex 3352 . . . 4 (𝑇𝑊𝑇 ∈ V)
5 elex 3352 . . . 4 (𝐼𝑉𝐼 ∈ V)
6 simpr 479 . . . . . . . . . . 11 ((𝑟 = 𝑇𝑖 = 𝐼) → 𝑖 = 𝐼)
76oveq2d 6830 . . . . . . . . . 10 ((𝑟 = 𝑇𝑖 = 𝐼) → (ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼))
8 rabeq 3332 . . . . . . . . . 10 ((ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
97, 8syl 17 . . . . . . . . 9 ((𝑟 = 𝑇𝑖 = 𝐼) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
10 ltbval.d . . . . . . . . 9 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
119, 10syl6eqr 2812 . . . . . . . 8 ((𝑟 = 𝑇𝑖 = 𝐼) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
1211sseq2d 3774 . . . . . . 7 ((𝑟 = 𝑇𝑖 = 𝐼) → ({𝑥, 𝑦} ⊆ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ↔ {𝑥, 𝑦} ⊆ 𝐷))
13 simpl 474 . . . . . . . . . . . 12 ((𝑟 = 𝑇𝑖 = 𝐼) → 𝑟 = 𝑇)
1413breqd 4815 . . . . . . . . . . 11 ((𝑟 = 𝑇𝑖 = 𝐼) → (𝑧𝑟𝑤𝑧𝑇𝑤))
1514imbi1d 330 . . . . . . . . . 10 ((𝑟 = 𝑇𝑖 = 𝐼) → ((𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))
166, 15raleqbidv 3291 . . . . . . . . 9 ((𝑟 = 𝑇𝑖 = 𝐼) → (∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))
1716anbi2d 742 . . . . . . . 8 ((𝑟 = 𝑇𝑖 = 𝐼) → (((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
186, 17rexeqbidv 3292 . . . . . . 7 ((𝑟 = 𝑇𝑖 = 𝐼) → (∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
1912, 18anbi12d 749 . . . . . 6 ((𝑟 = 𝑇𝑖 = 𝐼) → (({𝑥, 𝑦} ⊆ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))))
2019opabbidv 4868 . . . . 5 ((𝑟 = 𝑇𝑖 = 𝐼) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
21 df-ltbag 19581 . . . . 5 <bag = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
22 vex 3343 . . . . . . . . 9 𝑥 ∈ V
23 vex 3343 . . . . . . . . 9 𝑦 ∈ V
2422, 23prss 4496 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
2524anbi1i 733 . . . . . . 7 (((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))) ↔ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))))
2625opabbii 4869 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
27 ovex 6842 . . . . . . . . 9 (ℕ0𝑚 𝐼) ∈ V
2810, 27rabex2 4966 . . . . . . . 8 𝐷 ∈ V
2928, 28xpex 7128 . . . . . . 7 (𝐷 × 𝐷) ∈ V
30 opabssxp 5350 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ⊆ (𝐷 × 𝐷)
3129, 30ssexi 4955 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐷𝑦𝐷) ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ∈ V
3226, 31eqeltrri 2836 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} ∈ V
3320, 21, 32ovmpt2a 6957 . . . 4 ((𝑇 ∈ V ∧ 𝐼 ∈ V) → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
344, 5, 33syl2an 495 . . 3 ((𝑇𝑊𝐼𝑉) → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
352, 3, 34syl2anc 696 . 2 (𝜑 → (𝑇 <bag 𝐼) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
361, 35syl5eq 2806 1 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  wrex 3051  {crab 3054  Vcvv 3340  wss 3715  {cpr 4323   class class class wbr 4804  {copab 4864   × cxp 5264  ccnv 5265  cima 5269  cfv 6049  (class class class)co 6814  𝑚 cmap 8025  Fincfn 8123   < clt 10286  cn 11232  0cn0 11504   <bag cltb 19576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-ltbag 19581
This theorem is referenced by:  ltbwe  19694
  Copyright terms: Public domain W3C validator