![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddrpd | Structured version Visualization version GIF version |
Description: Adding a positive number to another number increases it. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpgecld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
rpgecld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ+) |
Ref | Expression |
---|---|
ltaddrpd | ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | rpgecld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ+) | |
3 | ltaddrp 12069 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 < (𝐴 + 𝐵)) | |
4 | 1, 2, 3 | syl2anc 565 | 1 ⊢ (𝜑 → 𝐴 < (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 class class class wbr 4784 (class class class)co 6792 ℝcr 10136 + caddc 10140 < clt 10275 ℝ+crp 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-ltxr 10280 df-rp 12035 |
This theorem is referenced by: ltaddrp2d 12108 xov1plusxeqvd 12524 isumltss 14786 effsumlt 15046 tanhlt1 15095 4sqlem12 15866 vdwlem1 15891 prmgaplem7 15967 chfacfscmul0 20882 chfacfpmmul0 20886 nlmvscnlem2 22708 nlmvscnlem1 22709 iccntr 22843 icccmplem2 22845 reconnlem2 22849 lebnumii 22984 ipcnlem2 23261 ipcnlem1 23262 ivthlem2 23439 ovolgelb 23467 ovollb2lem 23475 itg2monolem3 23738 dvferm1lem 23966 lhop1lem 23995 lhop 23998 dvcnvrelem1 23999 dvcnvrelem2 24000 pserdvlem1 24400 pserdv 24402 lgamgulmlem2 24976 lgamgulmlem3 24977 lgamucov 24984 perfectlem2 25175 bposlem2 25230 pntibndlem2 25500 pntlemb 25506 pntlem3 25518 tpr2rico 30292 omssubaddlem 30695 fibp1 30797 heicant 33770 itg2addnc 33789 rrnequiv 33959 pellfundex 37969 rmspecfund 37993 acongeq 38069 jm3.1lem2 38104 oddfl 40001 infrpge 40077 xralrple2 40080 xrralrecnnle 40112 iooiinicc 40281 iooiinioc 40295 fsumnncl 40315 climinf 40350 lptre2pt 40384 ioodvbdlimc1lem2 40659 wallispilem4 40796 dirkertrigeqlem3 40828 dirkercncflem2 40832 fourierdlem63 40897 fourierdlem65 40899 fourierdlem75 40909 fourierdlem79 40913 fouriersw 40959 etransclem35 40997 qndenserrnbllem 41025 omeiunltfirp 41247 hoidmvlelem1 41323 hoidmvlelem3 41325 hoiqssbllem3 41352 iinhoiicc 41402 iunhoiioo 41404 vonioolem2 41409 vonicclem1 41411 preimaleiinlt 41445 smfmullem3 41514 perfectALTVlem2 42149 |
Copyright terms: Public domain | W3C validator |