MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpr Structured version   Visualization version   GIF version

Theorem ltaddpr 9800
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddpr ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Proof of Theorem ltaddpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 9755 . . . . 5 (𝐵P𝐵 ≠ ∅)
2 n0 3907 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
31, 2sylib 208 . . . 4 (𝐵P → ∃𝑦 𝑦𝐵)
43adantl 482 . . 3 ((𝐴P𝐵P) → ∃𝑦 𝑦𝐵)
5 addclpr 9784 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
65adantr 481 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → (𝐴 +P 𝐵) ∈ P)
7 df-plp 9749 . . . . . . . . . . . . 13 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
8 addclnq 9711 . . . . . . . . . . . . 13 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
97, 8genpprecl 9767 . . . . . . . . . . . 12 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)))
109imp 445 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵))
11 elprnq 9757 . . . . . . . . . . . . 13 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → (𝑥 +Q 𝑦) ∈ Q)
12 addnqf 9714 . . . . . . . . . . . . . . 15 +Q :(Q × Q)⟶Q
1312fdmi 6009 . . . . . . . . . . . . . 14 dom +Q = (Q × Q)
14 0nnq 9690 . . . . . . . . . . . . . 14 ¬ ∅ ∈ Q
1513, 14ndmovrcl 6773 . . . . . . . . . . . . 13 ((𝑥 +Q 𝑦) ∈ Q → (𝑥Q𝑦Q))
16 ltaddnq 9740 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
1711, 15, 163syl 18 . . . . . . . . . . . 12 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → 𝑥 <Q (𝑥 +Q 𝑦))
18 prcdnq 9759 . . . . . . . . . . . 12 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → (𝑥 <Q (𝑥 +Q 𝑦) → 𝑥 ∈ (𝐴 +P 𝐵)))
1917, 18mpd 15 . . . . . . . . . . 11 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → 𝑥 ∈ (𝐴 +P 𝐵))
206, 10, 19syl2anc 692 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ (𝐴 +P 𝐵))
2120exp32 630 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑥𝐴 → (𝑦𝐵𝑥 ∈ (𝐴 +P 𝐵))))
2221com23 86 . . . . . . . 8 ((𝐴P𝐵P) → (𝑦𝐵 → (𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵))))
2322alrimdv 1854 . . . . . . 7 ((𝐴P𝐵P) → (𝑦𝐵 → ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵))))
24 dfss2 3572 . . . . . . 7 (𝐴 ⊆ (𝐴 +P 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵)))
2523, 24syl6ibr 242 . . . . . 6 ((𝐴P𝐵P) → (𝑦𝐵𝐴 ⊆ (𝐴 +P 𝐵)))
26 vex 3189 . . . . . . . . 9 𝑦 ∈ V
2726prlem934 9799 . . . . . . . 8 (𝐴P → ∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴)
2827adantr 481 . . . . . . 7 ((𝐴P𝐵P) → ∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴)
29 eleq2 2687 . . . . . . . . . . . . 13 (𝐴 = (𝐴 +P 𝐵) → ((𝑥 +Q 𝑦) ∈ 𝐴 ↔ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)))
3029biimprcd 240 . . . . . . . . . . . 12 ((𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵) → (𝐴 = (𝐴 +P 𝐵) → (𝑥 +Q 𝑦) ∈ 𝐴))
3130con3d 148 . . . . . . . . . . 11 ((𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵) → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵)))
329, 31syl6 35 . . . . . . . . . 10 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵))))
3332expd 452 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑥𝐴 → (𝑦𝐵 → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵)))))
3433com34 91 . . . . . . . 8 ((𝐴P𝐵P) → (𝑥𝐴 → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵)))))
3534rexlimdv 3023 . . . . . . 7 ((𝐴P𝐵P) → (∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴 → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵))))
3628, 35mpd 15 . . . . . 6 ((𝐴P𝐵P) → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵)))
3725, 36jcad 555 . . . . 5 ((𝐴P𝐵P) → (𝑦𝐵 → (𝐴 ⊆ (𝐴 +P 𝐵) ∧ ¬ 𝐴 = (𝐴 +P 𝐵))))
38 dfpss2 3670 . . . . 5 (𝐴 ⊊ (𝐴 +P 𝐵) ↔ (𝐴 ⊆ (𝐴 +P 𝐵) ∧ ¬ 𝐴 = (𝐴 +P 𝐵)))
3937, 38syl6ibr 242 . . . 4 ((𝐴P𝐵P) → (𝑦𝐵𝐴 ⊊ (𝐴 +P 𝐵)))
4039exlimdv 1858 . . 3 ((𝐴P𝐵P) → (∃𝑦 𝑦𝐵𝐴 ⊊ (𝐴 +P 𝐵)))
414, 40mpd 15 . 2 ((𝐴P𝐵P) → 𝐴 ⊊ (𝐴 +P 𝐵))
42 ltprord 9796 . . 3 ((𝐴P ∧ (𝐴 +P 𝐵) ∈ P) → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴 ⊊ (𝐴 +P 𝐵)))
435, 42syldan 487 . 2 ((𝐴P𝐵P) → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴 ⊊ (𝐴 +P 𝐵)))
4441, 43mpbird 247 1 ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wne 2790  wrex 2908  wss 3555  wpss 3556  c0 3891   class class class wbr 4613   × cxp 5072  (class class class)co 6604  Qcnq 9618   +Q cplq 9621   <Q cltq 9624  Pcnp 9625   +P cpp 9627  <P cltp 9629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ni 9638  df-pli 9639  df-mi 9640  df-lti 9641  df-plpq 9674  df-mpq 9675  df-ltpq 9676  df-enq 9677  df-nq 9678  df-erq 9679  df-plq 9680  df-mq 9681  df-1nq 9682  df-rq 9683  df-ltnq 9684  df-np 9747  df-plp 9749  df-ltp 9751
This theorem is referenced by:  ltaddpr2  9801  ltexprlem7  9808  ltaprlem  9810  0lt1sr  9860  mappsrpr  9873
  Copyright terms: Public domain W3C validator