MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddpr Structured version   Visualization version   GIF version

Theorem ltaddpr 9544
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddpr ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))

Proof of Theorem ltaddpr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prn0 9499 . . . . 5 (𝐵P𝐵 ≠ ∅)
2 n0 3767 . . . . 5 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
31, 2sylib 203 . . . 4 (𝐵P → ∃𝑦 𝑦𝐵)
43adantl 475 . . 3 ((𝐴P𝐵P) → ∃𝑦 𝑦𝐵)
5 addclpr 9528 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
65adantr 474 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → (𝐴 +P 𝐵) ∈ P)
7 df-plp 9493 . . . . . . . . . . . . 13 +P = (𝑤P, 𝑣P ↦ {𝑥 ∣ ∃𝑦𝑤𝑧𝑣 𝑥 = (𝑦 +Q 𝑧)})
8 addclnq 9455 . . . . . . . . . . . . 13 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
97, 8genpprecl 9511 . . . . . . . . . . . 12 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)))
109imp 438 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵))
11 elprnq 9501 . . . . . . . . . . . . 13 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → (𝑥 +Q 𝑦) ∈ Q)
12 addnqf 9458 . . . . . . . . . . . . . . 15 +Q :(Q × Q)⟶Q
1312fdmi 5791 . . . . . . . . . . . . . 14 dom +Q = (Q × Q)
14 0nnq 9434 . . . . . . . . . . . . . 14 ¬ ∅ ∈ Q
1513, 14ndmovrcl 6530 . . . . . . . . . . . . 13 ((𝑥 +Q 𝑦) ∈ Q → (𝑥Q𝑦Q))
16 ltaddnq 9484 . . . . . . . . . . . . 13 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
1711, 15, 163syl 18 . . . . . . . . . . . 12 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → 𝑥 <Q (𝑥 +Q 𝑦))
18 prcdnq 9503 . . . . . . . . . . . 12 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → (𝑥 <Q (𝑥 +Q 𝑦) → 𝑥 ∈ (𝐴 +P 𝐵)))
1917, 18mpd 15 . . . . . . . . . . 11 (((𝐴 +P 𝐵) ∈ P ∧ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)) → 𝑥 ∈ (𝐴 +P 𝐵))
206, 10, 19syl2anc 682 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑥𝐴𝑦𝐵)) → 𝑥 ∈ (𝐴 +P 𝐵))
2120exp32 622 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑥𝐴 → (𝑦𝐵𝑥 ∈ (𝐴 +P 𝐵))))
2221com23 82 . . . . . . . 8 ((𝐴P𝐵P) → (𝑦𝐵 → (𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵))))
2322alrimdv 1806 . . . . . . 7 ((𝐴P𝐵P) → (𝑦𝐵 → ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵))))
24 dfss2 3443 . . . . . . 7 (𝐴 ⊆ (𝐴 +P 𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐴 +P 𝐵)))
2523, 24syl6ibr 237 . . . . . 6 ((𝐴P𝐵P) → (𝑦𝐵𝐴 ⊆ (𝐴 +P 𝐵)))
26 vex 3069 . . . . . . . . 9 𝑦 ∈ V
2726prlem934 9543 . . . . . . . 8 (𝐴P → ∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴)
2827adantr 474 . . . . . . 7 ((𝐴P𝐵P) → ∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴)
29 eleq2 2572 . . . . . . . . . . . . 13 (𝐴 = (𝐴 +P 𝐵) → ((𝑥 +Q 𝑦) ∈ 𝐴 ↔ (𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵)))
3029biimprcd 235 . . . . . . . . . . . 12 ((𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵) → (𝐴 = (𝐴 +P 𝐵) → (𝑥 +Q 𝑦) ∈ 𝐴))
3130con3d 142 . . . . . . . . . . 11 ((𝑥 +Q 𝑦) ∈ (𝐴 +P 𝐵) → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵)))
329, 31syl6 34 . . . . . . . . . 10 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵))))
3332expd 445 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑥𝐴 → (𝑦𝐵 → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → ¬ 𝐴 = (𝐴 +P 𝐵)))))
3433com34 87 . . . . . . . 8 ((𝐴P𝐵P) → (𝑥𝐴 → (¬ (𝑥 +Q 𝑦) ∈ 𝐴 → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵)))))
3534rexlimdv 2905 . . . . . . 7 ((𝐴P𝐵P) → (∃𝑥𝐴 ¬ (𝑥 +Q 𝑦) ∈ 𝐴 → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵))))
3628, 35mpd 15 . . . . . 6 ((𝐴P𝐵P) → (𝑦𝐵 → ¬ 𝐴 = (𝐴 +P 𝐵)))
3725, 36jcad 548 . . . . 5 ((𝐴P𝐵P) → (𝑦𝐵 → (𝐴 ⊆ (𝐴 +P 𝐵) ∧ ¬ 𝐴 = (𝐴 +P 𝐵))))
38 dfpss2 3540 . . . . 5 (𝐴 ⊊ (𝐴 +P 𝐵) ↔ (𝐴 ⊆ (𝐴 +P 𝐵) ∧ ¬ 𝐴 = (𝐴 +P 𝐵)))
3937, 38syl6ibr 237 . . . 4 ((𝐴P𝐵P) → (𝑦𝐵𝐴 ⊊ (𝐴 +P 𝐵)))
4039exlimdv 1810 . . 3 ((𝐴P𝐵P) → (∃𝑦 𝑦𝐵𝐴 ⊊ (𝐴 +P 𝐵)))
414, 40mpd 15 . 2 ((𝐴P𝐵P) → 𝐴 ⊊ (𝐴 +P 𝐵))
42 ltprord 9540 . . 3 ((𝐴P ∧ (𝐴 +P 𝐵) ∈ P) → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴 ⊊ (𝐴 +P 𝐵)))
435, 42syldan 480 . 2 ((𝐴P𝐵P) → (𝐴<P (𝐴 +P 𝐵) ↔ 𝐴 ⊊ (𝐴 +P 𝐵)))
4441, 43mpbird 242 1 ((𝐴P𝐵P) → 𝐴<P (𝐴 +P 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 191  wa 378  wal 1466   = wceq 1468  wex 1692  wcel 1937  wne 2675  wrex 2792  wss 3426  wpss 3427  c0 3757   class class class wbr 4434   × cxp 4878  (class class class)co 6363  Qcnq 9362   +Q cplq 9365   <Q cltq 9368  Pcnp 9369   +P cpp 9371  <P cltp 9373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659  ax-inf2 8231
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3758  df-if 3909  df-pw 3980  df-sn 3996  df-pr 3998  df-tp 4000  df-op 4002  df-uni 4229  df-int 4265  df-iun 4309  df-br 4435  df-opab 4494  df-mpt 4495  df-tr 4531  df-eprel 4791  df-id 4795  df-po 4801  df-so 4802  df-fr 4839  df-we 4841  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-pred 5431  df-ord 5477  df-on 5478  df-lim 5479  df-suc 5480  df-iota 5597  df-fun 5635  df-fn 5636  df-f 5637  df-f1 5638  df-fo 5639  df-f1o 5640  df-fv 5641  df-ov 6366  df-oprab 6367  df-mpt2 6368  df-om 6770  df-1st 6870  df-2nd 6871  df-wrecs 7105  df-recs 7167  df-rdg 7205  df-1o 7259  df-oadd 7263  df-omul 7264  df-er 7440  df-ni 9382  df-pli 9383  df-mi 9384  df-lti 9385  df-plpq 9418  df-mpq 9419  df-ltpq 9420  df-enq 9421  df-nq 9422  df-erq 9423  df-plq 9424  df-mq 9425  df-1nq 9426  df-rq 9427  df-ltnq 9428  df-np 9491  df-plp 9493  df-ltp 9495
This theorem is referenced by:  ltaddpr2  9545  ltexprlem7  9552  ltaprlem  9554  0lt1sr  9604  mappsrpr  9617
  Copyright terms: Public domain W3C validator