MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltaddnq Structured version   Visualization version   GIF version

Theorem ltaddnq 9834
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltaddnq ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))

Proof of Theorem ltaddnq
Dummy variables 𝑥 𝑦 𝑠 𝑟 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
2 oveq1 6697 . . 3 (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦))
31, 2breq12d 4698 . 2 (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦)))
4 oveq2 6698 . . 3 (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵))
54breq2d 4697 . 2 (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵)))
6 1lt2nq 9833 . . . . . . . 8 1Q <Q (1Q +Q 1Q)
7 ltmnq 9832 . . . . . . . 8 (𝑦Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))))
86, 7mpbii 223 . . . . . . 7 (𝑦Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))
9 mulidnq 9823 . . . . . . 7 (𝑦Q → (𝑦 ·Q 1Q) = 𝑦)
10 distrnq 9821 . . . . . . . 8 (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q))
119, 9oveq12d 6708 . . . . . . . 8 (𝑦Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦))
1210, 11syl5eq 2697 . . . . . . 7 (𝑦Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦))
138, 9, 123brtr3d 4716 . . . . . 6 (𝑦Q𝑦 <Q (𝑦 +Q 𝑦))
14 ltanq 9831 . . . . . 6 (𝑥Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))))
1513, 14syl5ib 234 . . . . 5 (𝑥Q → (𝑦Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))))
1615imp 444 . . . 4 ((𝑥Q𝑦Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))
17 addcomnq 9811 . . . 4 (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥)
18 vex 3234 . . . . 5 𝑥 ∈ V
19 vex 3234 . . . . 5 𝑦 ∈ V
20 addcomnq 9811 . . . . 5 (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟)
21 addassnq 9818 . . . . 5 ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡))
2218, 19, 19, 20, 21caov12 6904 . . . 4 (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦))
2316, 17, 223brtr3g 4718 . . 3 ((𝑥Q𝑦Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))
24 ltanq 9831 . . . 4 (𝑦Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))))
2524adantl 481 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))))
2623, 25mpbird 247 . 2 ((𝑥Q𝑦Q) → 𝑥 <Q (𝑥 +Q 𝑦))
273, 5, 26vtocl2ga 3305 1 ((𝐴Q𝐵Q) → 𝐴 <Q (𝐴 +Q 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  Qcnq 9712  1Qc1q 9713   +Q cplq 9715   ·Q cmq 9716   <Q cltq 9718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-ni 9732  df-pli 9733  df-mi 9734  df-lti 9735  df-plpq 9768  df-mpq 9769  df-ltpq 9770  df-enq 9771  df-nq 9772  df-erq 9773  df-plq 9774  df-mq 9775  df-1nq 9776  df-ltnq 9778
This theorem is referenced by:  ltexnq  9835  nsmallnq  9837  ltbtwnnq  9838  prlem934  9893  ltaddpr  9894  ltexprlem2  9897  ltexprlem4  9899
  Copyright terms: Public domain W3C validator