![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltaddnq | Structured version Visualization version GIF version |
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltaddnq | ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
2 | oveq1 6697 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 +Q 𝑦) = (𝐴 +Q 𝑦)) | |
3 | 1, 2 | breq12d 4698 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝑦))) |
4 | oveq2 6698 | . . 3 ⊢ (𝑦 = 𝐵 → (𝐴 +Q 𝑦) = (𝐴 +Q 𝐵)) | |
5 | 4 | breq2d 4697 | . 2 ⊢ (𝑦 = 𝐵 → (𝐴 <Q (𝐴 +Q 𝑦) ↔ 𝐴 <Q (𝐴 +Q 𝐵))) |
6 | 1lt2nq 9833 | . . . . . . . 8 ⊢ 1Q <Q (1Q +Q 1Q) | |
7 | ltmnq 9832 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → (1Q <Q (1Q +Q 1Q) ↔ (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q)))) | |
8 | 6, 7 | mpbii 223 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) <Q (𝑦 ·Q (1Q +Q 1Q))) |
9 | mulidnq 9823 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q 1Q) = 𝑦) | |
10 | distrnq 9821 | . . . . . . . 8 ⊢ (𝑦 ·Q (1Q +Q 1Q)) = ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) | |
11 | 9, 9 | oveq12d 6708 | . . . . . . . 8 ⊢ (𝑦 ∈ Q → ((𝑦 ·Q 1Q) +Q (𝑦 ·Q 1Q)) = (𝑦 +Q 𝑦)) |
12 | 10, 11 | syl5eq 2697 | . . . . . . 7 ⊢ (𝑦 ∈ Q → (𝑦 ·Q (1Q +Q 1Q)) = (𝑦 +Q 𝑦)) |
13 | 8, 9, 12 | 3brtr3d 4716 | . . . . . 6 ⊢ (𝑦 ∈ Q → 𝑦 <Q (𝑦 +Q 𝑦)) |
14 | ltanq 9831 | . . . . . 6 ⊢ (𝑥 ∈ Q → (𝑦 <Q (𝑦 +Q 𝑦) ↔ (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) | |
15 | 13, 14 | syl5ib 234 | . . . . 5 ⊢ (𝑥 ∈ Q → (𝑦 ∈ Q → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦)))) |
16 | 15 | imp 444 | . . . 4 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 +Q 𝑦) <Q (𝑥 +Q (𝑦 +Q 𝑦))) |
17 | addcomnq 9811 | . . . 4 ⊢ (𝑥 +Q 𝑦) = (𝑦 +Q 𝑥) | |
18 | vex 3234 | . . . . 5 ⊢ 𝑥 ∈ V | |
19 | vex 3234 | . . . . 5 ⊢ 𝑦 ∈ V | |
20 | addcomnq 9811 | . . . . 5 ⊢ (𝑟 +Q 𝑠) = (𝑠 +Q 𝑟) | |
21 | addassnq 9818 | . . . . 5 ⊢ ((𝑟 +Q 𝑠) +Q 𝑡) = (𝑟 +Q (𝑠 +Q 𝑡)) | |
22 | 18, 19, 19, 20, 21 | caov12 6904 | . . . 4 ⊢ (𝑥 +Q (𝑦 +Q 𝑦)) = (𝑦 +Q (𝑥 +Q 𝑦)) |
23 | 16, 17, 22 | 3brtr3g 4718 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦))) |
24 | ltanq 9831 | . . . 4 ⊢ (𝑦 ∈ Q → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) | |
25 | 24 | adantl 481 | . . 3 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → (𝑥 <Q (𝑥 +Q 𝑦) ↔ (𝑦 +Q 𝑥) <Q (𝑦 +Q (𝑥 +Q 𝑦)))) |
26 | 23, 25 | mpbird 247 | . 2 ⊢ ((𝑥 ∈ Q ∧ 𝑦 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑦)) |
27 | 3, 5, 26 | vtocl2ga 3305 | 1 ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 Qcnq 9712 1Qc1q 9713 +Q cplq 9715 ·Q cmq 9716 <Q cltq 9718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-omul 7610 df-er 7787 df-ni 9732 df-pli 9733 df-mi 9734 df-lti 9735 df-plpq 9768 df-mpq 9769 df-ltpq 9770 df-enq 9771 df-nq 9772 df-erq 9773 df-plq 9774 df-mq 9775 df-1nq 9776 df-ltnq 9778 |
This theorem is referenced by: ltexnq 9835 nsmallnq 9837 ltbtwnnq 9838 prlem934 9893 ltaddpr 9894 ltexprlem2 9897 ltexprlem4 9899 |
Copyright terms: Public domain | W3C validator |