![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lt2halves | Structured version Visualization version GIF version |
Description: A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006.) |
Ref | Expression |
---|---|
lt2halves | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < (𝐶 / 2) ∧ 𝐵 < (𝐶 / 2)) → (𝐴 + 𝐵) < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1141 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | |
2 | rehalfcl 11459 | . . . . 5 ⊢ (𝐶 ∈ ℝ → (𝐶 / 2) ∈ ℝ) | |
3 | 2, 2 | jca 495 | . . . 4 ⊢ (𝐶 ∈ ℝ → ((𝐶 / 2) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ)) |
4 | 3 | 3ad2ant3 1128 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 / 2) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ)) |
5 | lt2add 10714 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 / 2) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ)) → ((𝐴 < (𝐶 / 2) ∧ 𝐵 < (𝐶 / 2)) → (𝐴 + 𝐵) < ((𝐶 / 2) + (𝐶 / 2)))) | |
6 | 1, 4, 5 | syl2anc 565 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < (𝐶 / 2) ∧ 𝐵 < (𝐶 / 2)) → (𝐴 + 𝐵) < ((𝐶 / 2) + (𝐶 / 2)))) |
7 | recn 10227 | . . . . 5 ⊢ (𝐶 ∈ ℝ → 𝐶 ∈ ℂ) | |
8 | 2halves 11461 | . . . . 5 ⊢ (𝐶 ∈ ℂ → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝐶 ∈ ℝ → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶) |
10 | 9 | breq2d 4796 | . . 3 ⊢ (𝐶 ∈ ℝ → ((𝐴 + 𝐵) < ((𝐶 / 2) + (𝐶 / 2)) ↔ (𝐴 + 𝐵) < 𝐶)) |
11 | 10 | 3ad2ant3 1128 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < ((𝐶 / 2) + (𝐶 / 2)) ↔ (𝐴 + 𝐵) < 𝐶)) |
12 | 6, 11 | sylibd 229 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < (𝐶 / 2) ∧ 𝐵 < (𝐶 / 2)) → (𝐴 + 𝐵) < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 (class class class)co 6792 ℂcc 10135 ℝcr 10136 + caddc 10140 < clt 10275 / cdiv 10885 2c2 11271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-2 11280 |
This theorem is referenced by: lt2halvesd 11481 ngptgp 22659 vacn 27883 bfplem2 33947 |
Copyright terms: Public domain | W3C validator |