![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lswco | Structured version Visualization version GIF version |
Description: Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if 𝑊 = ∅, (𝐹‘∅) ≠ ∅ and ∅ ∈ 𝐴, because then ( lastS ‘(𝐹 ∘ 𝑊)) = ( lastS ‘∅) = ∅ ≠ (𝐹‘∅) = (𝐹( lastS ‘𝑊)). (Contributed by AV, 11-Nov-2018.) |
Ref | Expression |
---|---|
lswco | ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ( lastS ‘(𝐹 ∘ 𝑊)) = (𝐹‘( lastS ‘𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6086 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
2 | 1 | anim1i 591 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑊 ∈ Word 𝐴) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
3 | 2 | ancoms 468 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
4 | 3 | 3adant2 1100 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴)) |
5 | cofunexg 7172 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑊 ∈ Word 𝐴) → (𝐹 ∘ 𝑊) ∈ V) | |
6 | lsw 13384 | . . 3 ⊢ ((𝐹 ∘ 𝑊) ∈ V → ( lastS ‘(𝐹 ∘ 𝑊)) = ((𝐹 ∘ 𝑊)‘((#‘(𝐹 ∘ 𝑊)) − 1))) | |
7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ( lastS ‘(𝐹 ∘ 𝑊)) = ((𝐹 ∘ 𝑊)‘((#‘(𝐹 ∘ 𝑊)) − 1))) |
8 | lenco 13624 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝐹:𝐴⟶𝐵) → (#‘(𝐹 ∘ 𝑊)) = (#‘𝑊)) | |
9 | 8 | 3adant2 1100 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (#‘(𝐹 ∘ 𝑊)) = (#‘𝑊)) |
10 | 9 | oveq1d 6705 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((#‘(𝐹 ∘ 𝑊)) − 1) = ((#‘𝑊) − 1)) |
11 | 10 | fveq2d 6233 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((#‘(𝐹 ∘ 𝑊)) − 1)) = ((𝐹 ∘ 𝑊)‘((#‘𝑊) − 1))) |
12 | wrdf 13342 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝐴 → 𝑊:(0..^(#‘𝑊))⟶𝐴) | |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(#‘𝑊))⟶𝐴) |
14 | lennncl 13357 | . . . . . . 7 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (#‘𝑊) ∈ ℕ) | |
15 | fzo0end 12600 | . . . . . . 7 ⊢ ((#‘𝑊) ∈ ℕ → ((#‘𝑊) − 1) ∈ (0..^(#‘𝑊))) | |
16 | 14, 15 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → ((#‘𝑊) − 1) ∈ (0..^(#‘𝑊))) |
17 | 13, 16 | jca 553 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(#‘𝑊))⟶𝐴 ∧ ((#‘𝑊) − 1) ∈ (0..^(#‘𝑊)))) |
18 | 17 | 3adant3 1101 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝑊:(0..^(#‘𝑊))⟶𝐴 ∧ ((#‘𝑊) − 1) ∈ (0..^(#‘𝑊)))) |
19 | fvco3 6314 | . . . 4 ⊢ ((𝑊:(0..^(#‘𝑊))⟶𝐴 ∧ ((#‘𝑊) − 1) ∈ (0..^(#‘𝑊))) → ((𝐹 ∘ 𝑊)‘((#‘𝑊) − 1)) = (𝐹‘(𝑊‘((#‘𝑊) − 1)))) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((#‘𝑊) − 1)) = (𝐹‘(𝑊‘((#‘𝑊) − 1)))) |
21 | lsw 13384 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝐴 → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1))) | |
22 | 21 | 3ad2ant1 1102 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1))) |
23 | 22 | eqcomd 2657 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝑊‘((#‘𝑊) − 1)) = ( lastS ‘𝑊)) |
24 | 23 | fveq2d 6233 | . . 3 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → (𝐹‘(𝑊‘((#‘𝑊) − 1))) = (𝐹‘( lastS ‘𝑊))) |
25 | 20, 24 | eqtrd 2685 | . 2 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ((𝐹 ∘ 𝑊)‘((#‘𝑊) − 1)) = (𝐹‘( lastS ‘𝑊))) |
26 | 7, 11, 25 | 3eqtrd 2689 | 1 ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑊 ≠ ∅ ∧ 𝐹:𝐴⟶𝐵) → ( lastS ‘(𝐹 ∘ 𝑊)) = (𝐹‘( lastS ‘𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∅c0 3948 ∘ ccom 5147 Fun wfun 5920 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 − cmin 10304 ℕcn 11058 ..^cfzo 12504 #chash 13157 Word cword 13323 lastS clsw 13324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-lsw 13332 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |