Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lswccatn0lsw Structured version   Visualization version   GIF version

Theorem lswccatn0lsw 13576
 Description: The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
Assertion
Ref Expression
lswccatn0lsw ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))

Proof of Theorem lswccatn0lsw
StepHypRef Expression
1 ovex 6821 . . . 4 (𝐴 ++ 𝐵) ∈ V
2 lsw 13551 . . . 4 ((𝐴 ++ 𝐵) ∈ V → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
31, 2mp1i 13 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)))
4 ccatlen 13560 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
54oveq1d 6806 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
653adant3 1124 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) = (((♯‘𝐴) + (♯‘𝐵)) − 1))
7 lencl 13523 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
87nn0zd 11680 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
983ad2ant1 1125 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐴) ∈ ℤ)
10 lennncl 13524 . . . . . . . . . 10 ((𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
11103adant1 1122 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐵) ∈ ℕ)
12 simpl 475 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
13 nnz 11599 . . . . . . . . . . . 12 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℤ)
1413adantl 474 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐵) ∈ ℤ)
1512, 14zaddcld 11686 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
16 zre 11581 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℤ → (♯‘𝐴) ∈ ℝ)
17 nnrp 12044 . . . . . . . . . . 11 ((♯‘𝐵) ∈ ℕ → (♯‘𝐵) ∈ ℝ+)
18 ltaddrp 12069 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ+) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
1916, 17, 18syl2an 496 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵)))
2012, 15, 193jca 1120 . . . . . . . . 9 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
219, 11, 20syl2anc 693 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
22 fzolb 12683 . . . . . . . 8 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ ∧ (♯‘𝐴) < ((♯‘𝐴) + (♯‘𝐵))))
2321, 22sylibr 224 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
24 fzoend 12766 . . . . . . 7 ((♯‘𝐴) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
2523, 24syl 17 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘𝐴) + (♯‘𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
266, 25eqeltrd 2848 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
27 ccatval2 13563 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ ((♯‘(𝐴 ++ 𝐵)) − 1) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
2826, 27syld3an3 1513 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))))
295oveq1d 6806 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)))
307nn0cnd 11553 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
31 lencl 13523 . . . . . . . . 9 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
3231nn0cnd 11553 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
33 addcl 10218 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℂ)
34 1cnd 10256 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → 1 ∈ ℂ)
35 simpl 475 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (♯‘𝐴) ∈ ℂ)
3633, 34, 35sub32d 10624 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1))
37 pncan2 10488 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) = (♯‘𝐵))
3837oveq1d 6806 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − (♯‘𝐴)) − 1) = ((♯‘𝐵) − 1))
3936, 38eqtrd 2803 . . . . . . . 8 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
4030, 32, 39syl2an 496 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((((♯‘𝐴) + (♯‘𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
4129, 40eqtrd 2803 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
42413adant3 1124 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴)) = ((♯‘𝐵) − 1))
4342fveq2d 6335 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (𝐵‘(((♯‘(𝐴 ++ 𝐵)) − 1) − (♯‘𝐴))) = (𝐵‘((♯‘𝐵) − 1)))
4428, 43eqtrd 2803 . . 3 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → ((𝐴 ++ 𝐵)‘((♯‘(𝐴 ++ 𝐵)) − 1)) = (𝐵‘((♯‘𝐵) − 1)))
453, 44eqtrd 2803 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (𝐵‘((♯‘𝐵) − 1)))
46 lsw 13551 . . . 4 (𝐵 ∈ Word 𝑉 → (lastS‘𝐵) = (𝐵‘((♯‘𝐵) − 1)))
4746eqcomd 2775 . . 3 (𝐵 ∈ Word 𝑉 → (𝐵‘((♯‘𝐵) − 1)) = (lastS‘𝐵))
48473ad2ant2 1126 . 2 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (𝐵‘((♯‘𝐵) − 1)) = (lastS‘𝐵))
4945, 48eqtrd 2803 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1069   = wceq 1629   ∈ wcel 2143   ≠ wne 2941  Vcvv 3348  ∅c0 4060   class class class wbr 4783  ‘cfv 6030  (class class class)co 6791  ℂcc 10134  ℝcr 10135  1c1 10137   + caddc 10139   < clt 10274   − cmin 10466  ℕcn 11220  ℤcz 11577  ℝ+crp 12034  ..^cfzo 12672  ♯chash 13324  Word cword 13490  lastSclsw 13491   ++ cconcat 13492 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-reu 3066  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-int 4609  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-oadd 7715  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-n0 11493  df-z 11578  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-hash 13325  df-word 13498  df-lsw 13499  df-concat 13500 This theorem is referenced by:  lswccats1  13622  clwwlkccat  27144
 Copyright terms: Public domain W3C validator