![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsw | Structured version Visualization version GIF version |
Description: Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
Ref | Expression |
---|---|
lsw | ⊢ (𝑊 ∈ 𝑋 → ( lastS ‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3316 | . 2 ⊢ (𝑊 ∈ 𝑋 → 𝑊 ∈ V) | |
2 | fvex 6314 | . 2 ⊢ (𝑊‘((♯‘𝑊) − 1)) ∈ V | |
3 | id 22 | . . . 4 ⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | |
4 | fveq2 6304 | . . . . 5 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
5 | 4 | oveq1d 6780 | . . . 4 ⊢ (𝑤 = 𝑊 → ((♯‘𝑤) − 1) = ((♯‘𝑊) − 1)) |
6 | 3, 5 | fveq12d 6310 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑤‘((♯‘𝑤) − 1)) = (𝑊‘((♯‘𝑊) − 1))) |
7 | df-lsw 13407 | . . 3 ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) | |
8 | 6, 7 | fvmptg 6394 | . 2 ⊢ ((𝑊 ∈ V ∧ (𝑊‘((♯‘𝑊) − 1)) ∈ V) → ( lastS ‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
9 | 1, 2, 8 | sylancl 697 | 1 ⊢ (𝑊 ∈ 𝑋 → ( lastS ‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ‘cfv 6001 (class class class)co 6765 1c1 10050 − cmin 10379 ♯chash 13232 lastS clsw 13399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fv 6009 df-ov 6768 df-lsw 13407 |
This theorem is referenced by: lsw0 13460 lsw1 13462 lswcl 13463 ccatval1lsw 13477 lswccatn0lsw 13484 swrd0fvlsw 13564 swrdlsw 13573 swrdccatwrd 13589 repswlsw 13650 lswcshw 13682 lswco 13705 lsws2 13770 lsws3 13771 lsws4 13772 wrdl2exs2 13812 swrd2lsw 13817 psgnunilem5 18035 wlkonwlk1l 26690 wwlknlsw 26872 wwlksnext 26932 wwlksnredwwlkn 26934 wwlksnextproplem2 26949 clwlkclwwlklem2a1 27036 clwlkclwwlklem2a3 27038 clwlkclwwlklem2a4 27041 clwlkclwwlklem2 27044 clwwisshclwwslem 27058 clwwlknlbonbgr1 27089 clwwlkn2 27094 clwwlkel 27096 clwwlkf 27097 clwwlkwwlksb 27105 clwwlknonex2lem2 27178 2clwwlk2clwwlklem 27424 numclwlk1lem2f1 27437 iwrdsplit 30679 signsvtn0 30877 signstfveq0 30884 lswn0 41807 pfxfvlsw 41830 |
Copyright terms: Public domain | W3C validator |