![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssvscl | Structured version Visualization version GIF version |
Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lssvscl.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lssvscl.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lssvscl.b | ⊢ 𝐵 = (Base‘𝐹) |
lssvscl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssvscl | ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 750 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑊 ∈ LMod) | |
2 | simprl 754 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
3 | eqid 2771 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | lssvscl.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | 3, 4 | lssel 19148 | . . . . 5 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Base‘𝑊)) |
6 | 5 | ad2ant2l 740 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ (Base‘𝑊)) |
7 | lssvscl.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
8 | lssvscl.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lssvscl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
10 | 3, 7, 8, 9 | lmodvscl 19090 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ (Base‘𝑊)) → (𝑋 · 𝑌) ∈ (Base‘𝑊)) |
11 | 1, 2, 6, 10 | syl3anc 1476 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ (Base‘𝑊)) |
12 | eqid 2771 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
13 | eqid 2771 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
14 | 3, 12, 13 | lmod0vrid 19104 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑋 · 𝑌) ∈ (Base‘𝑊)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) = (𝑋 · 𝑌)) |
15 | 1, 11, 14 | syl2anc 573 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) = (𝑋 · 𝑌)) |
16 | simplr 752 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑈 ∈ 𝑆) | |
17 | simprr 756 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → 𝑌 ∈ 𝑈) | |
18 | 13, 4 | lss0cl 19157 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (0g‘𝑊) ∈ 𝑈) |
19 | 18 | adantr 466 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (0g‘𝑊) ∈ 𝑈) |
20 | 7, 9, 12, 8, 4 | lsscl 19153 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ (0g‘𝑊) ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) ∈ 𝑈) |
21 | 16, 2, 17, 19, 20 | syl13anc 1478 | . 2 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → ((𝑋 · 𝑌)(+g‘𝑊)(0g‘𝑊)) ∈ 𝑈) |
22 | 15, 21 | eqeltrrd 2851 | 1 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → (𝑋 · 𝑌) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 +gcplusg 16149 Scalarcsca 16152 ·𝑠 cvsca 16153 0gc0g 16308 LModclmod 19073 LSubSpclss 19142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mgp 18698 df-ur 18710 df-ring 18757 df-lmod 19075 df-lss 19143 |
This theorem is referenced by: lssvnegcl 19169 islss3 19172 islss4 19175 lspsneli 19214 lspsn 19215 lmhmima 19260 lmhmpreima 19261 reslmhm 19265 lsmcl 19296 pj1lmhm 19313 lssvs0or 19323 lspfixed 19341 lspfixedOLD 19342 lspexch 19343 lspsolv 19357 lidlmcl 19432 mplbas2 19685 frlmssuvc1 20350 frlmsslsp 20352 lssnlm 22725 minveclem2 23416 pjthlem1 23427 lshpkrlem5 34923 ldualssvscl 34967 dochkr1 37288 dochkr1OLDN 37289 lclkrlem2o 37331 lcfrlem5 37356 lcdlssvscl 37416 hgmapvvlem3 37735 gsumlsscl 42689 |
Copyright terms: Public domain | W3C validator |