![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssvancl1 | Structured version Visualization version GIF version |
Description: Non-closure: if one vector belongs to a subspace but another does not, their sum does not belong. Useful for obtaining a new vector not in a subspace. TODO: notice similarity to lspindp3 19184. Can it be used along with lspsnne1 19165, lspsnne2 19166 to shorten this proof? (Contributed by NM, 14-May-2015.) |
Ref | Expression |
---|---|
lssvancl.v | ⊢ 𝑉 = (Base‘𝑊) |
lssvancl.p | ⊢ + = (+g‘𝑊) |
lssvancl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssvancl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lssvancl.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lssvancl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lssvancl.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lssvancl.n | ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
lssvancl1 | ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvancl.n | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ 𝑈) | |
2 | lssvancl.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lmodabl 18958 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Abel) |
5 | lssvancl.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
6 | lssvancl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
7 | lssvancl.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lssvancl.s | . . . . . . 7 ⊢ 𝑆 = (LSubSp‘𝑊) | |
9 | 7, 8 | lssel 18986 | . . . . . 6 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑉) |
10 | 5, 6, 9 | syl2anc 694 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
11 | lssvancl.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
12 | lssvancl.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
13 | eqid 2651 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
14 | 7, 12, 13 | ablpncan2 18267 | . . . . 5 ⊢ ((𝑊 ∈ Abel ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
15 | 4, 10, 11, 14 | syl3anc 1366 | . . . 4 ⊢ (𝜑 → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) = 𝑌) |
17 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑊 ∈ LMod) |
18 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑈 ∈ 𝑆) |
19 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → (𝑋 + 𝑌) ∈ 𝑈) | |
20 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑋 ∈ 𝑈) |
21 | 13, 8 | lssvsubcl 18992 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ ((𝑋 + 𝑌) ∈ 𝑈 ∧ 𝑋 ∈ 𝑈)) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
22 | 17, 18, 19, 20, 21 | syl22anc 1367 | . . 3 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → ((𝑋 + 𝑌)(-g‘𝑊)𝑋) ∈ 𝑈) |
23 | 16, 22 | eqeltrrd 2731 | . 2 ⊢ ((𝜑 ∧ (𝑋 + 𝑌) ∈ 𝑈) → 𝑌 ∈ 𝑈) |
24 | 1, 23 | mtand 692 | 1 ⊢ (𝜑 → ¬ (𝑋 + 𝑌) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 -gcsg 17471 Abelcabl 18240 LModclmod 18911 LSubSpclss 18980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-sbg 17474 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-lmod 18913 df-lss 18981 |
This theorem is referenced by: lssvancl2 18994 dvh3dim2 37054 dvh3dim3N 37055 hdmap11lem2 37451 |
Copyright terms: Public domain | W3C validator |