![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsssssubg | Structured version Visualization version GIF version |
Description: All subspaces are subgroups. (Contributed by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsssubg.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lsssssubg | ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsssubg.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lsssubg 19080 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (SubGrp‘𝑊)) |
3 | 2 | ex 449 | . 2 ⊢ (𝑊 ∈ LMod → (𝑥 ∈ 𝑆 → 𝑥 ∈ (SubGrp‘𝑊))) |
4 | 3 | ssrdv 3715 | 1 ⊢ (𝑊 ∈ LMod → 𝑆 ⊆ (SubGrp‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 ⊆ wss 3680 ‘cfv 6001 SubGrpcsubg 17710 LModclmod 18986 LSubSpclss 19055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-grp 17547 df-minusg 17548 df-sbg 17549 df-subg 17713 df-mgp 18611 df-ur 18623 df-ring 18670 df-lmod 18988 df-lss 19056 |
This theorem is referenced by: lsmsp 19209 lspprabs 19218 pj1lmhm 19223 pj1lmhm2 19224 lspindpi 19255 lvecindp 19261 lsmcv 19264 pjdm2 20178 pjf2 20181 pjfo 20182 ocvpj 20184 pjthlem2 23330 lshpnel 34690 lshpnelb 34691 lsmsat 34715 lrelat 34721 lsmcv2 34736 lcvexchlem1 34741 lcvexchlem2 34742 lcvexchlem3 34743 lcvexchlem4 34744 lcvexchlem5 34745 lcv1 34748 lcv2 34749 lsatexch 34750 lsatcv0eq 34754 lsatcvatlem 34756 lsatcvat 34757 lsatcvat3 34759 l1cvat 34762 lkrlsp 34809 lshpsmreu 34816 lshpkrlem5 34821 dia2dimlem5 36776 dia2dimlem9 36780 dvhopellsm 36825 diblsmopel 36879 cdlemn5pre 36908 cdlemn11c 36917 dihjustlem 36924 dihord1 36926 dihord2a 36927 dihord2b 36928 dihord11c 36932 dihord6apre 36964 dihord5b 36967 dihord5apre 36970 dihjatc3 37021 dihmeetlem9N 37023 dihjatcclem1 37126 dihjatcclem2 37127 dihjat 37131 dvh3dim3N 37157 dochexmidlem2 37169 dochexmidlem6 37173 dochexmidlem7 37174 lclkrlem2b 37216 lclkrlem2f 37220 lclkrlem2v 37236 lclkrslem2 37246 lcfrlem23 37273 lcfrlem25 37275 lcfrlem35 37285 mapdlsm 37372 mapdpglem3 37383 mapdindp0 37427 lspindp5 37478 hdmaprnlem3eN 37569 hdmapglem7a 37638 |
Copyright terms: Public domain | W3C validator |