![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssss | Structured version Visualization version GIF version |
Description: A subspace is a set of vectors. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lssss.v | ⊢ 𝑉 = (Base‘𝑊) |
lssss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssss | ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2651 | . . 3 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
3 | lssss.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2651 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | eqid 2651 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | lssss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | islss 18983 | . 2 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑊))∀𝑎 ∈ 𝑈 ∀𝑏 ∈ 𝑈 ((𝑥( ·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ 𝑈)) |
8 | 7 | simp1bi 1096 | 1 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ⊆ wss 3607 ∅c0 3948 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 Scalarcsca 15991 ·𝑠 cvsca 15992 LSubSpclss 18980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-lss 18981 |
This theorem is referenced by: lssel 18986 lssuni 18988 00lss 18990 lsssubg 19005 islss3 19007 lsslss 19009 lssintcl 19012 lssmre 19014 lssacs 19015 lspid 19030 lspssv 19031 lspssp 19036 lsslsp 19063 lmhmima 19095 reslmhm 19100 lsmsp 19134 pj1lmhm 19148 lsppratlem2 19196 lsppratlem3 19197 lsppratlem4 19198 lspprat 19201 lbsextlem3 19208 lidlss 19258 ocvin 20066 pjdm2 20103 pjff 20104 pjf2 20106 pjfo 20107 pjcss 20108 frlmgsum 20159 frlmsplit2 20160 lsslindf 20217 lsslinds 20218 lssbn 23194 minveclem1 23241 minveclem2 23243 minveclem3a 23244 minveclem3b 23245 minveclem3 23246 minveclem4a 23247 minveclem4b 23248 minveclem4 23249 minveclem6 23251 minveclem7 23252 pjthlem1 23254 pjthlem2 23255 pjth 23256 islshpsm 34585 lshpnelb 34589 lshpnel2N 34590 lshpcmp 34593 lsatssv 34603 lssats 34617 lpssat 34618 lssatle 34620 lssat 34621 islshpcv 34658 lkrssv 34701 lkrlsp 34707 dvhopellsm 36723 dvadiaN 36734 dihss 36857 dihrnss 36884 dochord2N 36977 dochord3 36978 dihoml4 36983 dochsat 36989 dochshpncl 36990 dochnoncon 36997 djhlsmcl 37020 dihjat1lem 37034 dochsatshp 37057 dochsatshpb 37058 dochshpsat 37060 dochexmidlem2 37067 dochexmidlem5 37070 dochexmidlem6 37071 dochexmidlem7 37072 dochexmidlem8 37073 lclkrlem2p 37128 lclkrlem2v 37134 lcfrlem5 37152 lcfr 37191 mapdpglem17N 37294 mapdpglem18 37295 mapdpglem21 37298 islssfg 37957 islssfg2 37958 lnmlsslnm 37968 kercvrlsm 37970 lnmepi 37972 filnm 37977 gsumlsscl 42489 lincellss 42540 ellcoellss 42549 |
Copyright terms: Public domain | W3C validator |