MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssnlm Structured version   Visualization version   GIF version

Theorem lssnlm 22725
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
lssnlm.x 𝑋 = (𝑊s 𝑈)
lssnlm.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssnlm ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)

Proof of Theorem lssnlm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlmngp 22701 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
21adantr 466 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑊 ∈ NrmGrp)
3 nlmlmod 22702 . . . . 5 (𝑊 ∈ NrmMod → 𝑊 ∈ LMod)
4 lssnlm.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
54lsssubg 19170 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
63, 5sylan 569 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
7 lssnlm.x . . . . 5 𝑋 = (𝑊s 𝑈)
87subgngp 22659 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
92, 6, 8syl2anc 573 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
107, 4lsslmod 19173 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
113, 10sylan 569 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
12 eqid 2771 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
137, 12resssca 16239 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413adantl 467 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
1512nlmnrg 22703 . . . . 5 (𝑊 ∈ NrmMod → (Scalar‘𝑊) ∈ NrmRing)
1615adantr 466 . . . 4 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ NrmRing)
1714, 16eqeltrrd 2851 . . 3 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (Scalar‘𝑋) ∈ NrmRing)
189, 11, 173jca 1122 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → (𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing))
19 simpll 750 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ NrmMod)
20 simprl 754 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑋)))
2114adantr 466 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑊) = (Scalar‘𝑋))
2221fveq2d 6337 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑋)))
2320, 22eleqtrrd 2853 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
246adantr 466 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ∈ (SubGrp‘𝑊))
25 eqid 2771 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2625subgss 17803 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ (Base‘𝑊))
2724, 26syl 17 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 ⊆ (Base‘𝑊))
28 simprr 756 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑋))
297subgbas 17806 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
3024, 29syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈 = (Base‘𝑋))
3128, 30eleqtrrd 2853 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦𝑈)
3227, 31sseldd 3753 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑦 ∈ (Base‘𝑊))
33 eqid 2771 . . . . . 6 (norm‘𝑊) = (norm‘𝑊)
34 eqid 2771 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
35 eqid 2771 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
36 eqid 2771 . . . . . 6 (norm‘(Scalar‘𝑊)) = (norm‘(Scalar‘𝑊))
3725, 33, 34, 12, 35, 36nmvs 22700 . . . . 5 ((𝑊 ∈ NrmMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
3819, 23, 32, 37syl3anc 1476 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
39 simplr 752 . . . . . . . 8 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑈𝑆)
407, 34ressvsca 16240 . . . . . . . 8 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4139, 40syl 17 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
4241oveqd 6813 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) = (𝑥( ·𝑠𝑋)𝑦))
4342fveq2d 6337 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)))
443ad2antrr 705 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑊 ∈ LMod)
4512, 34, 35, 4lssvscl 19168 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑈)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
4644, 39, 23, 31, 45syl22anc 1477 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈)
47 eqid 2771 . . . . . . 7 (norm‘𝑋) = (norm‘𝑋)
487, 33, 47subgnm2 22658 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑥( ·𝑠𝑊)𝑦) ∈ 𝑈) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
4924, 46, 48syl2anc 573 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑊)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
5043, 49eqtr3d 2807 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = ((norm‘𝑊)‘(𝑥( ·𝑠𝑊)𝑦)))
5121eqcomd 2777 . . . . . . 7 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (Scalar‘𝑋) = (Scalar‘𝑊))
5251fveq2d 6337 . . . . . 6 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑊)))
5352fveq1d 6335 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘(Scalar‘𝑋))‘𝑥) = ((norm‘(Scalar‘𝑊))‘𝑥))
547, 33, 47subgnm2 22658 . . . . . 6 ((𝑈 ∈ (SubGrp‘𝑊) ∧ 𝑦𝑈) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
5524, 31, 54syl2anc 573 . . . . 5 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘𝑦) = ((norm‘𝑊)‘𝑦))
5653, 55oveq12d 6814 . . . 4 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)) = (((norm‘(Scalar‘𝑊))‘𝑥) · ((norm‘𝑊)‘𝑦)))
5738, 50, 563eqtr4d 2815 . . 3 (((𝑊 ∈ NrmMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋))) → ((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
5857ralrimivva 3120 . 2 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦)))
59 eqid 2771 . . 3 (Base‘𝑋) = (Base‘𝑋)
60 eqid 2771 . . 3 ( ·𝑠𝑋) = ( ·𝑠𝑋)
61 eqid 2771 . . 3 (Scalar‘𝑋) = (Scalar‘𝑋)
62 eqid 2771 . . 3 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
63 eqid 2771 . . 3 (norm‘(Scalar‘𝑋)) = (norm‘(Scalar‘𝑋))
6459, 47, 60, 61, 62, 63isnlm 22699 . 2 (𝑋 ∈ NrmMod ↔ ((𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ (Scalar‘𝑋) ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘(Scalar‘𝑋))∀𝑦 ∈ (Base‘𝑋)((norm‘𝑋)‘(𝑥( ·𝑠𝑋)𝑦)) = (((norm‘(Scalar‘𝑋))‘𝑥) · ((norm‘𝑋)‘𝑦))))
6518, 58, 64sylanbrc 572 1 ((𝑊 ∈ NrmMod ∧ 𝑈𝑆) → 𝑋 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wss 3723  cfv 6030  (class class class)co 6796   · cmul 10147  Basecbs 16064  s cress 16065  Scalarcsca 16152   ·𝑠 cvsca 16153  SubGrpcsubg 17796  LModclmod 19073  LSubSpclss 19142  normcnm 22601  NrmGrpcngp 22602  NrmRingcnrg 22604  NrmModcnlm 22605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-sca 16165  df-vsca 16166  df-tset 16168  df-ds 16172  df-rest 16291  df-topn 16292  df-0g 16310  df-topgen 16312  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-mgp 18698  df-ur 18710  df-ring 18757  df-lmod 19075  df-lss 19143  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-xms 22345  df-ms 22346  df-nm 22607  df-ngp 22608  df-nlm 22611
This theorem is referenced by:  lssnvc  22726
  Copyright terms: Public domain W3C validator