MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslss Structured version   Visualization version   GIF version

Theorem lsslss 19183
Description: The subspaces of a subspace are the smaller subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lsslss.x 𝑋 = (𝑊s 𝑈)
lsslss.s 𝑆 = (LSubSp‘𝑊)
lsslss.t 𝑇 = (LSubSp‘𝑋)
Assertion
Ref Expression
lsslss ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))

Proof of Theorem lsslss
StepHypRef Expression
1 lsslss.x . . . 4 𝑋 = (𝑊s 𝑈)
2 lsslss.s . . . 4 𝑆 = (LSubSp‘𝑊)
31, 2lsslmod 19182 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
4 eqid 2760 . . . 4 (𝑋s 𝑉) = (𝑋s 𝑉)
5 eqid 2760 . . . 4 (Base‘𝑋) = (Base‘𝑋)
6 lsslss.t . . . 4 𝑇 = (LSubSp‘𝑋)
74, 5, 6islss3 19181 . . 3 (𝑋 ∈ LMod → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
83, 7syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
9 eqid 2760 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
109, 2lssss 19159 . . . . . 6 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
1110adantl 473 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (Base‘𝑊))
121, 9ressbas2 16153 . . . . 5 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
1311, 12syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
1413sseq2d 3774 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑈𝑉 ⊆ (Base‘𝑋)))
1514anbi1d 743 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉 ⊆ (Base‘𝑋) ∧ (𝑋s 𝑉) ∈ LMod)))
16 sstr2 3751 . . . . . . 7 (𝑉𝑈 → (𝑈 ⊆ (Base‘𝑊) → 𝑉 ⊆ (Base‘𝑊)))
1711, 16mpan9 487 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → 𝑉 ⊆ (Base‘𝑊))
1817biantrurd 530 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑉) ∈ LMod ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
191oveq1i 6824 . . . . . . 7 (𝑋s 𝑉) = ((𝑊s 𝑈) ↾s 𝑉)
20 ressabs 16161 . . . . . . . 8 ((𝑈𝑆𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2120adantll 752 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑊s 𝑈) ↾s 𝑉) = (𝑊s 𝑉))
2219, 21syl5eq 2806 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑋s 𝑉) = (𝑊s 𝑉))
2322eleq1d 2824 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ (𝑊s 𝑉) ∈ LMod))
24 eqid 2760 . . . . . . 7 (𝑊s 𝑉) = (𝑊s 𝑉)
2524, 9, 2islss3 19181 . . . . . 6 (𝑊 ∈ LMod → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
2625ad2antrr 764 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → (𝑉𝑆 ↔ (𝑉 ⊆ (Base‘𝑊) ∧ (𝑊s 𝑉) ∈ LMod)))
2718, 23, 263bitr4d 300 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑉𝑈) → ((𝑋s 𝑉) ∈ LMod ↔ 𝑉𝑆))
2827pm5.32da 676 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑈𝑉𝑆)))
29 ancom 465 . . 3 ((𝑉𝑈𝑉𝑆) ↔ (𝑉𝑆𝑉𝑈))
3028, 29syl6bb 276 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ((𝑉𝑈 ∧ (𝑋s 𝑉) ∈ LMod) ↔ (𝑉𝑆𝑉𝑈)))
318, 15, 303bitr2d 296 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑉𝑇 ↔ (𝑉𝑆𝑉𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wss 3715  cfv 6049  (class class class)co 6814  Basecbs 16079  s cress 16080  LModclmod 19085  LSubSpclss 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-sca 16179  df-vsca 16180  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-mgp 18710  df-ur 18722  df-ring 18769  df-lmod 19087  df-lss 19155
This theorem is referenced by:  lsslsp  19237  mplbas2  19692  mplind  19724  lcdlss  37428  lnmlsslnm  38171  lmhmlnmsplit  38177
  Copyright terms: Public domain W3C validator