Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lssats Structured version   Visualization version   GIF version

Theorem lssats 34821
Description: The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 29560 analog.) (Contributed by NM, 9-Apr-2014.)
Hypotheses
Ref Expression
lssats.s 𝑆 = (LSubSp‘𝑊)
lssats.n 𝑁 = (LSpan‘𝑊)
lssats.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lssats ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁   𝑥,𝑆   𝑥,𝑈
Allowed substitution hint:   𝑊(𝑥)

Proof of Theorem lssats
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2838 . . . . 5 (𝑦 = (0g𝑊) → (𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}) ↔ (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
2 simplll 758 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑊 ∈ LMod)
3 simpllr 760 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑈𝑆)
4 simplr 752 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦𝑈)
5 eqid 2771 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
6 lssats.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
75, 6lssel 19148 . . . . . . . . . 10 ((𝑈𝑆𝑦𝑈) → 𝑦 ∈ (Base‘𝑊))
83, 4, 7syl2anc 573 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (Base‘𝑊))
9 lssats.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
105, 6, 9lspsncl 19190 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
112, 8, 10syl2anc 573 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝑆)
126, 9lspid 19195 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑦}) ∈ 𝑆) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
132, 11, 12syl2anc 573 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) = (𝑁‘{𝑦}))
14 lssats.a . . . . . . . . . . . . 13 𝐴 = (LSAtoms‘𝑊)
156, 14lsatlss 34805 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝐴𝑆)
1615adantr 466 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝐴𝑆)
17 rabss2 3834 . . . . . . . . . . 11 (𝐴𝑆 → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
18 uniss 4596 . . . . . . . . . . 11 ({𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈} → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
1916, 17, 183syl 18 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈})
20 unimax 4610 . . . . . . . . . . . 12 (𝑈𝑆 {𝑥𝑆𝑥𝑈} = 𝑈)
215, 6lssss 19147 . . . . . . . . . . . 12 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
2220, 21eqsstrd 3788 . . . . . . . . . . 11 (𝑈𝑆 {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2322adantl 467 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊))
2419, 23sstrd 3762 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
2524ad2antrr 705 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊))
26 simpr 471 . . . . . . . . . . 11 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ≠ (0g𝑊))
27 eqid 2771 . . . . . . . . . . . 12 (0g𝑊) = (0g𝑊)
285, 9, 27, 14lsatlspsn2 34801 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
292, 8, 26, 28syl3anc 1476 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ 𝐴)
306, 9, 2, 3, 4lspsnel5a 19209 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ 𝑈)
31 sseq1 3775 . . . . . . . . . . 11 (𝑥 = (𝑁‘{𝑦}) → (𝑥𝑈 ↔ (𝑁‘{𝑦}) ⊆ 𝑈))
3231elrab 3515 . . . . . . . . . 10 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} ↔ ((𝑁‘{𝑦}) ∈ 𝐴 ∧ (𝑁‘{𝑦}) ⊆ 𝑈))
3329, 30, 32sylanbrc 572 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈})
34 elssuni 4604 . . . . . . . . 9 ((𝑁‘{𝑦}) ∈ {𝑥𝐴𝑥𝑈} → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
3533, 34syl 17 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈})
365, 9lspss 19197 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊) ∧ (𝑁‘{𝑦}) ⊆ {𝑥𝐴𝑥𝑈}) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
372, 25, 35, 36syl3anc 1476 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘(𝑁‘{𝑦})) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
3813, 37eqsstr3d 3789 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → (𝑁‘{𝑦}) ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
395, 9lspsnid 19206 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
402, 8, 39syl2anc 573 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁‘{𝑦}))
4138, 40sseldd 3753 . . . . 5 ((((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) ∧ 𝑦 ≠ (0g𝑊)) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
42 simpll 750 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑊 ∈ LMod)
435, 6, 9lspcl 19189 . . . . . . . 8 ((𝑊 ∈ LMod ∧ {𝑥𝐴𝑥𝑈} ⊆ (Base‘𝑊)) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4424, 43syldan 579 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4544adantr 466 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆)
4627, 6lss0cl 19157 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑁 {𝑥𝐴𝑥𝑈}) ∈ 𝑆) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4742, 45, 46syl2anc 573 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → (0g𝑊) ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
481, 41, 47pm2.61ne 3028 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑦𝑈) → 𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈}))
4948ex 397 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑦𝑈𝑦 ∈ (𝑁 {𝑥𝐴𝑥𝑈})))
5049ssrdv 3758 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ⊆ (𝑁 {𝑥𝐴𝑥𝑈}))
51 simpl 468 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑊 ∈ LMod)
525, 9lspss 19197 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥𝑆𝑥𝑈} ⊆ (Base‘𝑊) ∧ {𝑥𝐴𝑥𝑈} ⊆ {𝑥𝑆𝑥𝑈}) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5351, 23, 19, 52syl3anc 1476 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ (𝑁 {𝑥𝑆𝑥𝑈}))
5420adantl 467 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → {𝑥𝑆𝑥𝑈} = 𝑈)
5554fveq2d 6337 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = (𝑁𝑈))
566, 9lspid 19195 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
5755, 56eqtrd 2805 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝑆𝑥𝑈}) = 𝑈)
5853, 57sseqtrd 3790 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁 {𝑥𝐴𝑥𝑈}) ⊆ 𝑈)
5950, 58eqssd 3769 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  {crab 3065  wss 3723  {csn 4317   cuni 4575  cfv 6030  Basecbs 16064  0gc0g 16308  LModclmod 19073  LSubSpclss 19142  LSpanclspn 19184  LSAtomsclsa 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mgp 18698  df-ur 18710  df-ring 18757  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lsatoms 34785
This theorem is referenced by:  lpssat  34822  lssatle  34824  lssat  34825
  Copyright terms: Public domain W3C validator