Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lss0v Structured version   Visualization version   GIF version

Theorem lss0v 19238
 Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.)
Hypotheses
Ref Expression
lss0v.x 𝑋 = (𝑊s 𝑈)
lss0v.o 0 = (0g𝑊)
lss0v.z 𝑍 = (0g𝑋)
lss0v.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
lss0v ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑍 = 0 )

Proof of Theorem lss0v
StepHypRef Expression
1 0ss 4115 . . . . 5 ∅ ⊆ 𝑈
2 lss0v.x . . . . . 6 𝑋 = (𝑊s 𝑈)
3 eqid 2760 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
4 eqid 2760 . . . . . 6 (LSpan‘𝑋) = (LSpan‘𝑋)
5 lss0v.l . . . . . 6 𝐿 = (LSubSp‘𝑊)
62, 3, 4, 5lsslsp 19237 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑊)‘∅) = ((LSpan‘𝑋)‘∅))
71, 6mp3an3 1562 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑊)‘∅) = ((LSpan‘𝑋)‘∅))
8 lss0v.o . . . . . 6 0 = (0g𝑊)
98, 3lsp0 19231 . . . . 5 (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 })
109adantr 472 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑊)‘∅) = { 0 })
112, 5lsslmod 19182 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑋 ∈ LMod)
12 lss0v.z . . . . . 6 𝑍 = (0g𝑋)
1312, 4lsp0 19231 . . . . 5 (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍})
1411, 13syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍})
157, 10, 143eqtr3rd 2803 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → {𝑍} = { 0 })
1615unieqd 4598 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → {𝑍} = { 0 })
17 fvex 6363 . . . 4 (0g𝑋) ∈ V
1812, 17eqeltri 2835 . . 3 𝑍 ∈ V
1918unisn 4603 . 2 {𝑍} = 𝑍
20 fvex 6363 . . . 4 (0g𝑊) ∈ V
218, 20eqeltri 2835 . . 3 0 ∈ V
2221unisn 4603 . 2 { 0 } = 0
2316, 19, 223eqtr3g 2817 1 ((𝑊 ∈ LMod ∧ 𝑈𝐿) → 𝑍 = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  Vcvv 3340   ⊆ wss 3715  ∅c0 4058  {csn 4321  ∪ cuni 4588  ‘cfv 6049  (class class class)co 6814   ↾s cress 16080  0gc0g 16322  LModclmod 19085  LSubSpclss 19154  LSpanclspn 19193 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-sca 16179  df-vsca 16180  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-subg 17812  df-mgp 18710  df-ur 18722  df-ring 18769  df-lmod 19087  df-lss 19155  df-lsp 19194 This theorem is referenced by:  lcd0v  37420
 Copyright terms: Public domain W3C validator