![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lss0v | Structured version Visualization version GIF version |
Description: The zero vector in a submodule equals the zero vector in the including module. (Contributed by NM, 15-Mar-2015.) |
Ref | Expression |
---|---|
lss0v.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
lss0v.o | ⊢ 0 = (0g‘𝑊) |
lss0v.z | ⊢ 𝑍 = (0g‘𝑋) |
lss0v.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lss0v | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4115 | . . . . 5 ⊢ ∅ ⊆ 𝑈 | |
2 | lss0v.x | . . . . . 6 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
3 | eqid 2760 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
4 | eqid 2760 | . . . . . 6 ⊢ (LSpan‘𝑋) = (LSpan‘𝑋) | |
5 | lss0v.l | . . . . . 6 ⊢ 𝐿 = (LSubSp‘𝑊) | |
6 | 2, 3, 4, 5 | lsslsp 19237 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿 ∧ ∅ ⊆ 𝑈) → ((LSpan‘𝑊)‘∅) = ((LSpan‘𝑋)‘∅)) |
7 | 1, 6 | mp3an3 1562 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = ((LSpan‘𝑋)‘∅)) |
8 | lss0v.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
9 | 8, 3 | lsp0 19231 | . . . . 5 ⊢ (𝑊 ∈ LMod → ((LSpan‘𝑊)‘∅) = { 0 }) |
10 | 9 | adantr 472 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑊)‘∅) = { 0 }) |
11 | 2, 5 | lsslmod 19182 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑋 ∈ LMod) |
12 | lss0v.z | . . . . . 6 ⊢ 𝑍 = (0g‘𝑋) | |
13 | 12, 4 | lsp0 19231 | . . . . 5 ⊢ (𝑋 ∈ LMod → ((LSpan‘𝑋)‘∅) = {𝑍}) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ((LSpan‘𝑋)‘∅) = {𝑍}) |
15 | 7, 10, 14 | 3eqtr3rd 2803 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → {𝑍} = { 0 }) |
16 | 15 | unieqd 4598 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → ∪ {𝑍} = ∪ { 0 }) |
17 | fvex 6363 | . . . 4 ⊢ (0g‘𝑋) ∈ V | |
18 | 12, 17 | eqeltri 2835 | . . 3 ⊢ 𝑍 ∈ V |
19 | 18 | unisn 4603 | . 2 ⊢ ∪ {𝑍} = 𝑍 |
20 | fvex 6363 | . . . 4 ⊢ (0g‘𝑊) ∈ V | |
21 | 8, 20 | eqeltri 2835 | . . 3 ⊢ 0 ∈ V |
22 | 21 | unisn 4603 | . 2 ⊢ ∪ { 0 } = 0 |
23 | 16, 19, 22 | 3eqtr3g 2817 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝐿) → 𝑍 = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 ∅c0 4058 {csn 4321 ∪ cuni 4588 ‘cfv 6049 (class class class)co 6814 ↾s cress 16080 0gc0g 16322 LModclmod 19085 LSubSpclss 19154 LSpanclspn 19193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-sca 16179 df-vsca 16180 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-mgp 18710 df-ur 18722 df-ring 18769 df-lmod 19087 df-lss 19155 df-lsp 19194 |
This theorem is referenced by: lcd0v 37420 |
Copyright terms: Public domain | W3C validator |