MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspun Structured version   Visualization version   GIF version

Theorem lspun 19035
Description: The span of union is the span of the union of spans. (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspss.v 𝑉 = (Base‘𝑊)
lspss.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspun ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))

Proof of Theorem lspun
StepHypRef Expression
1 simp1 1081 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑊 ∈ LMod)
2 simp2 1082 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇𝑉)
3 simp3 1083 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈𝑉)
42, 3unssd 3822 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ 𝑉)
5 ssun1 3809 . . . . . . 7 𝑇 ⊆ (𝑇𝑈)
65a1i 11 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑇𝑈))
7 lspss.v . . . . . . 7 𝑉 = (Base‘𝑊)
8 lspss.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
97, 8lspss 19032 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑇 ⊆ (𝑇𝑈)) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
101, 4, 6, 9syl3anc 1366 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑇) ⊆ (𝑁‘(𝑇𝑈)))
11 ssun2 3810 . . . . . . 7 𝑈 ⊆ (𝑇𝑈)
1211a1i 11 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈 ⊆ (𝑇𝑈))
137, 8lspss 19032 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉𝑈 ⊆ (𝑇𝑈)) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
141, 4, 12, 13syl3anc 1366 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁𝑈) ⊆ (𝑁‘(𝑇𝑈)))
1510, 14unssd 3822 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈)))
167, 8lspssv 19031 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
171, 4, 16syl2anc 694 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ 𝑉)
1815, 17sstrd 3646 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉)
197, 8lspssid 19033 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑇𝑉) → 𝑇 ⊆ (𝑁𝑇))
201, 2, 19syl2anc 694 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑇 ⊆ (𝑁𝑇))
217, 8lspssid 19033 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
221, 3, 21syl2anc 694 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → 𝑈 ⊆ (𝑁𝑈))
23 unss12 3818 . . . 4 ((𝑇 ⊆ (𝑁𝑇) ∧ 𝑈 ⊆ (𝑁𝑈)) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
2420, 22, 23syl2anc 694 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈)))
257, 8lspss 19032 . . 3 ((𝑊 ∈ LMod ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ 𝑉 ∧ (𝑇𝑈) ⊆ ((𝑁𝑇) ∪ (𝑁𝑈))) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
261, 18, 24, 25syl3anc 1366 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) ⊆ (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
277, 8lspss 19032 . . . 4 ((𝑊 ∈ LMod ∧ (𝑁‘(𝑇𝑈)) ⊆ 𝑉 ∧ ((𝑁𝑇) ∪ (𝑁𝑈)) ⊆ (𝑁‘(𝑇𝑈))) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
281, 17, 15, 27syl3anc 1366 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑁‘(𝑇𝑈))))
297, 8lspidm 19034 . . . 4 ((𝑊 ∈ LMod ∧ (𝑇𝑈) ⊆ 𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
301, 4, 29syl2anc 694 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑁‘(𝑇𝑈))) = (𝑁‘(𝑇𝑈)))
3128, 30sseqtrd 3674 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))) ⊆ (𝑁‘(𝑇𝑈)))
3226, 31eqssd 3653 1 ((𝑊 ∈ LMod ∧ 𝑇𝑉𝑈𝑉) → (𝑁‘(𝑇𝑈)) = (𝑁‘((𝑁𝑇) ∪ (𝑁𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  cun 3605  wss 3607  cfv 5926  Basecbs 15904  LModclmod 18911  LSpanclspn 19019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mgp 18536  df-ur 18548  df-ring 18595  df-lmod 18913  df-lss 18981  df-lsp 19020
This theorem is referenced by:  lspun0  19059  lsmsp2  19135  lsmpr  19137  lsppr  19141  islshpsm  34585  lshpnel2N  34590  lkrlsp3  34709  dochsatshp  37057
  Copyright terms: Public domain W3C validator