![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspssp | Structured version Visualization version GIF version |
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014.) |
Ref | Expression |
---|---|
lspssp.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspssp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspssp | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2770 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | lspssp.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | 1, 2 | lssss 19146 | . . 3 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ (Base‘𝑊)) |
4 | lspssp.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 1, 4 | lspss 19196 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ (Base‘𝑊) ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
6 | 3, 5 | syl3an2 1166 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ (𝑁‘𝑈)) |
7 | 2, 4 | lspid 19194 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
8 | 7 | 3adant3 1125 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑈) = 𝑈) |
9 | 6, 8 | sseqtrd 3788 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑇 ⊆ 𝑈) → (𝑁‘𝑇) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 ‘cfv 6031 Basecbs 16063 LModclmod 19072 LSubSpclss 19141 LSpanclspn 19183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-lmod 19074 df-lss 19142 df-lsp 19184 |
This theorem is referenced by: lspsnss 19202 lspprss 19204 lsp0 19221 lsslsp 19227 lmhmlsp 19261 lspextmo 19268 lsmsp 19298 lsppratlem3 19363 lsppratlem4 19364 islbs3 19369 rspssp 19440 ocvlsp 20236 frlmsslsp 20351 lspsslco 42744 |
Copyright terms: Public domain | W3C validator |