![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsntrim | Structured version Visualization version GIF version |
Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lspsntrim.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsntrim.s | ⊢ − = (-g‘𝑊) |
lspsntrim.p | ⊢ ⊕ = (LSSum‘𝑊) |
lspsntrim.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsntrim | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsntrim.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2760 | . . . . 5 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
3 | 1, 2 | lmodvnegcl 19126 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((invg‘𝑊)‘𝑌) ∈ 𝑉) |
4 | 3 | 3adant2 1126 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝑊)‘𝑌) ∈ 𝑉) |
5 | eqid 2760 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
6 | lspsntrim.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
7 | lspsntrim.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
8 | 1, 5, 6, 7 | lspsntri 19319 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ((invg‘𝑊)‘𝑌) ∈ 𝑉) → (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
9 | 4, 8 | syld3an3 1516 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
10 | lspsntrim.s | . . . . . 6 ⊢ − = (-g‘𝑊) | |
11 | 1, 5, 2, 10 | grpsubval 17686 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))) |
12 | 11 | sneqd 4333 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {(𝑋 − 𝑌)} = {(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))}) |
13 | 12 | fveq2d 6357 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))})) |
14 | 13 | 3adant1 1125 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑋(+g‘𝑊)((invg‘𝑊)‘𝑌))})) |
15 | 1, 2, 6 | lspsnneg 19228 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑌)}) = (𝑁‘{𝑌})) |
16 | 15 | 3adant2 1126 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑌)}) = (𝑁‘{𝑌})) |
17 | 16 | eqcomd 2766 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) = (𝑁‘{((invg‘𝑊)‘𝑌)})) |
18 | 17 | oveq2d 6830 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑌)}))) |
19 | 9, 14, 18 | 3sstr4d 3789 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 {csn 4321 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 invgcminusg 17644 -gcsg 17645 LSSumclsm 18269 LModclmod 19085 LSpanclspn 19193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-subg 17812 df-cntz 17970 df-lsm 18271 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-lmod 19087 df-lss 19155 df-lsp 19194 |
This theorem is referenced by: mapdpglem1 37481 baerlem3lem2 37519 baerlem5alem2 37520 baerlem5blem2 37521 |
Copyright terms: Public domain | W3C validator |