![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsntri | Structured version Visualization version GIF version |
Description: Triangle-type inequality for span of a singleton. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lspsntri.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsntri.a | ⊢ + = (+g‘𝑊) |
lspsntri.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsntri.p | ⊢ ⊕ = (LSSum‘𝑊) |
Ref | Expression |
---|---|
lspsntri | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsntri.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspsntri.a | . . . 4 ⊢ + = (+g‘𝑊) | |
3 | lspsntri.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | lspvadd 19309 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋, 𝑌})) |
5 | df-pr 4319 | . . . 4 ⊢ {𝑋, 𝑌} = ({𝑋} ∪ {𝑌}) | |
6 | 5 | fveq2i 6335 | . . 3 ⊢ (𝑁‘{𝑋, 𝑌}) = (𝑁‘({𝑋} ∪ {𝑌})) |
7 | 4, 6 | syl6sseq 3800 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘({𝑋} ∪ {𝑌}))) |
8 | simp1 1130 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑊 ∈ LMod) | |
9 | simp2 1131 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
10 | 9 | snssd 4475 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋} ⊆ 𝑉) |
11 | simp3 1132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
12 | 11 | snssd 4475 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑌} ⊆ 𝑉) |
13 | lspsntri.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
14 | 1, 3, 13 | lsmsp2 19300 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉 ∧ {𝑌} ⊆ 𝑉) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = (𝑁‘({𝑋} ∪ {𝑌}))) |
15 | 8, 10, 12, 14 | syl3anc 1476 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌})) = (𝑁‘({𝑋} ∪ {𝑌}))) |
16 | 7, 15 | sseqtr4d 3791 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∪ cun 3721 ⊆ wss 3723 {csn 4316 {cpr 4318 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 +gcplusg 16149 LSSumclsm 18256 LModclmod 19073 LSpanclspn 19184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-cntz 17957 df-lsm 18258 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-lmod 19075 df-lss 19143 df-lsp 19185 |
This theorem is referenced by: lspsntrim 19311 cdlemn4a 37009 lcfrlem23 37375 baerlem5blem2 37522 |
Copyright terms: Public domain | W3C validator |