MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneli Structured version   Visualization version   GIF version

Theorem lspsneli 19223
Description: A scalar product with a vector belongs to the span of its singleton. (spansnmul 28753 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lspsnvsel.v 𝑉 = (Base‘𝑊)
lspsnvsel.t · = ( ·𝑠𝑊)
lspsnvsel.f 𝐹 = (Scalar‘𝑊)
lspsnvsel.k 𝐾 = (Base‘𝐹)
lspsnvsel.n 𝑁 = (LSpan‘𝑊)
lspsnvsel.w (𝜑𝑊 ∈ LMod)
lspsnvsel.a (𝜑𝐴𝐾)
lspsnvsel.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspsneli (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))

Proof of Theorem lspsneli
StepHypRef Expression
1 lspsnvsel.w . 2 (𝜑𝑊 ∈ LMod)
2 lspsnvsel.x . . 3 (𝜑𝑋𝑉)
3 lspsnvsel.v . . . 4 𝑉 = (Base‘𝑊)
4 eqid 2760 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
5 lspsnvsel.n . . . 4 𝑁 = (LSpan‘𝑊)
63, 4, 5lspsncl 19199 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
71, 2, 6syl2anc 696 . 2 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
8 lspsnvsel.a . 2 (𝜑𝐴𝐾)
93, 5lspsnid 19215 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
101, 2, 9syl2anc 696 . 2 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
11 lspsnvsel.f . . 3 𝐹 = (Scalar‘𝑊)
12 lspsnvsel.t . . 3 · = ( ·𝑠𝑊)
13 lspsnvsel.k . . 3 𝐾 = (Base‘𝐹)
1411, 12, 13, 4lssvscl 19177 . 2 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) ∧ (𝐴𝐾𝑋 ∈ (𝑁‘{𝑋}))) → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
151, 7, 8, 10, 14syl22anc 1478 1 (𝜑 → (𝐴 · 𝑋) ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  {csn 4321  cfv 6049  (class class class)co 6814  Basecbs 16079  Scalarcsca 16166   ·𝑠 cvsca 16167  LModclmod 19085  LSubSpclss 19154  LSpanclspn 19193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mgp 18710  df-ur 18722  df-ring 18769  df-lmod 19087  df-lss 19155  df-lsp 19194
This theorem is referenced by:  lspsnvsi  19226  lsmspsn  19306  lsppreli  19312  lspexch  19351  lvecindp  19360  lvecindp2  19361  lshpdisj  34795  lkrlsp  34910  lshpsmreu  34917  lshpkrlem5  34922  baerlem3lem2  37519  baerlem5alem2  37520  baerlem5blem2  37521
  Copyright terms: Public domain W3C validator