Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneleq Structured version   Visualization version   GIF version

Theorem lspsneleq 19328
 Description: Membership relation that implies equality of spans. (spansneleq 28769 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsneleq.v 𝑉 = (Base‘𝑊)
lspsneleq.o 0 = (0g𝑊)
lspsneleq.n 𝑁 = (LSpan‘𝑊)
lspsneleq.w (𝜑𝑊 ∈ LVec)
lspsneleq.x (𝜑𝑋𝑉)
lspsneleq.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
lspsneleq.z (𝜑𝑌0 )
Assertion
Ref Expression
lspsneleq (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))

Proof of Theorem lspsneleq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lspsneleq.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
2 lspsneleq.w . . . . 5 (𝜑𝑊 ∈ LVec)
3 lveclmod 19319 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
5 lspsneleq.x . . . 4 (𝜑𝑋𝑉)
6 eqid 2771 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2771 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 lspsneleq.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2771 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 lspsneleq.n . . . . 5 𝑁 = (LSpan‘𝑊)
116, 7, 8, 9, 10lspsnel 19216 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
124, 5, 11syl2anc 573 . . 3 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
13 simpr 471 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
1413sneqd 4329 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → {𝑌} = {(𝑘( ·𝑠𝑊)𝑋)})
1514fveq2d 6337 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}))
162ad2antrr 705 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑊 ∈ LVec)
17 simplr 752 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
18 lspsneleq.z . . . . . . . . 9 (𝜑𝑌0 )
1918ad2antrr 705 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌0 )
20 simplr 752 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
21 simpr 471 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2221oveq1d 6811 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋))
23 eqid 2771 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
24 lspsneleq.o . . . . . . . . . . . . . 14 0 = (0g𝑊)
258, 6, 9, 23, 24lmod0vs 19106 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
264, 5, 25syl2anc 573 . . . . . . . . . . . 12 (𝜑 → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2726ad3antrrr 709 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2820, 22, 273eqtrd 2809 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = 0 )
2928ex 397 . . . . . . . . 9 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑌 = 0 ))
3029necon3d 2964 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑌0𝑘 ≠ (0g‘(Scalar‘𝑊))))
3119, 30mpd 15 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
325ad2antrr 705 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑋𝑉)
338, 6, 9, 7, 23, 10lspsnvs 19327 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑋𝑉) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3416, 17, 31, 32, 33syl121anc 1481 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3515, 34eqtrd 2805 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3635ex 397 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑌 = (𝑘( ·𝑠𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3736rexlimdva 3179 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3812, 37sylbid 230 . 2 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
391, 38mpd 15 1 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∃wrex 3062  {csn 4317  ‘cfv 6030  (class class class)co 6796  Basecbs 16064  Scalarcsca 16152   ·𝑠 cvsca 16153  0gc0g 16308  LModclmod 19073  LSpanclspn 19184  LVecclvec 19315 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mgp 18698  df-ur 18710  df-ring 18757  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-drng 18959  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316 This theorem is referenced by:  lspsncmp  19329  lspsnel4  19337  lspdisj2  19340  lspexch  19343  lsmcv  19355  mapdpglem10  37491  mapdpglem15  37496
 Copyright terms: Public domain W3C validator