![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnel5 | Structured version Visualization version GIF version |
Description: Relationship between a vector and the 1-dim (or 0-dim) subspace it generates. (Contributed by NM, 8-Aug-2014.) |
Ref | Expression |
---|---|
lspsnel5.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnel5.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspsnel5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnel5.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnel5.a | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspsnel5.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsnel5 | ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnel5.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspsnel5.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lspsnel5.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lspsnel5.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lspsnel5.a | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
6 | 1, 2, 3, 4, 5 | lspsnel6 19216 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
7 | lspsnel5.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
8 | 7 | biantrurd 530 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ (𝑁‘{𝑋}) ⊆ 𝑈))) |
9 | 6, 8 | bitr4d 271 | 1 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑁‘{𝑋}) ⊆ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 {csn 4321 ‘cfv 6049 Basecbs 16079 LModclmod 19085 LSubSpclss 19154 LSpanclspn 19193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-grp 17646 df-lmod 19087 df-lss 19155 df-lsp 19194 |
This theorem is referenced by: lspsnel5a 19218 lspprid1 19219 lspsnss2 19227 lsmelpr 19313 lspsncmp 19338 lspsnne1 19339 lspsnne2 19340 lspsneq 19344 lspindpi 19354 islbs2 19376 lindsenlbs 33735 lsatelbN 34814 lsmsat 34816 lsatfixedN 34817 l1cvpat 34862 dia2dimlem5 36877 dochsncom 37191 dihjat1lem 37237 dvh4dimlem 37252 lclkrlem2a 37316 lcfrlem6 37356 lcfrlem20 37371 lcfrlem26 37377 lcfrlem36 37387 mapdval2N 37439 mapdrvallem2 37454 mapdindp 37480 mapdh6aN 37544 lspindp5 37579 mapdh8ab 37586 mapdh8e 37593 hdmap1l6a 37619 hdmaprnlem3eN 37670 hdmapoc 37743 |
Copyright terms: Public domain | W3C validator |