![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsncmp | Structured version Visualization version GIF version |
Description: Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015.) |
Ref | Expression |
---|---|
lspsncmp.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsncmp.o | ⊢ 0 = (0g‘𝑊) |
lspsncmp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsncmp.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspsncmp.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lspsncmp.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsncmp | ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsncmp.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspsncmp.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
3 | lspsncmp.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lspsncmp.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | 4 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) → 𝑊 ∈ LVec) |
6 | lspsncmp.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
7 | 6 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) → 𝑌 ∈ 𝑉) |
8 | eqid 2770 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
9 | lveclmod 19318 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
10 | 4, 9 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
11 | 1, 8, 3 | lspsncl 19189 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
12 | 10, 6, 11 | syl2anc 565 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
13 | lspsncmp.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
14 | 13 | eldifad 3733 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
15 | 1, 8, 3, 10, 12, 14 | lspsnel5 19207 | . . . . 5 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}))) |
16 | 15 | biimpar 463 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) → 𝑋 ∈ (𝑁‘{𝑌})) |
17 | eldifsni 4455 | . . . . . 6 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
18 | 13, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
19 | 18 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) → 𝑋 ≠ 0 ) |
20 | 1, 2, 3, 5, 7, 16, 19 | lspsneleq 19327 | . . 3 ⊢ ((𝜑 ∧ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
21 | 20 | ex 397 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
22 | eqimss 3804 | . 2 ⊢ ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌})) | |
23 | 21, 22 | impbid1 215 | 1 ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∖ cdif 3718 ⊆ wss 3721 {csn 4314 ‘cfv 6031 Basecbs 16063 0gc0g 16307 LModclmod 19072 LSubSpclss 19141 LSpanclspn 19183 LVecclvec 19314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-tpos 7503 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mgp 18697 df-ur 18709 df-ring 18756 df-oppr 18830 df-dvdsr 18848 df-unit 18849 df-invr 18879 df-drng 18958 df-lmod 19074 df-lss 19142 df-lsp 19184 df-lvec 19315 |
This theorem is referenced by: lspsnne1 19329 lspabs2 19332 lspabs3 19333 lsatfixedN 34811 mapdindp0 37522 hdmaprnlem4N 37656 |
Copyright terms: Public domain | W3C validator |