![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspprss | Structured version Visualization version GIF version |
Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lspprss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprss.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspprss.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprss.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
lspprss.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
Ref | Expression |
---|---|
lspprss | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprss.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspprss.u | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
3 | lspprss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
4 | lspprss.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
5 | 3, 4 | jca 555 | . . 3 ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈)) |
6 | prssg 4458 | . . . 4 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) ↔ {𝑋, 𝑌} ⊆ 𝑈)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) ↔ {𝑋, 𝑌} ⊆ 𝑈)) |
8 | 5, 7 | mpbid 222 | . 2 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑈) |
9 | lspprss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
10 | lspprss.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
11 | 9, 10 | lspssp 19111 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ {𝑋, 𝑌} ⊆ 𝑈) → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
12 | 1, 2, 8, 11 | syl3anc 1439 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ⊆ wss 3680 {cpr 4287 ‘cfv 6001 LModclmod 18986 LSubSpclss 19055 LSpanclspn 19094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-0g 16225 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-grp 17547 df-lmod 18988 df-lss 19056 df-lsp 19095 |
This theorem is referenced by: lsppratlem2 19271 dvh3dim2 37156 dvh3dim3N 37157 lclkrlem2n 37228 |
Copyright terms: Public domain | W3C validator |