MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspprcl Structured version   Visualization version   GIF version

Theorem lspprcl 19180
Description: The span of a pair is a subspace (frequently used special case of lspcl 19178). (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
lspprcl.w (𝜑𝑊 ∈ LMod)
lspprcl.x (𝜑𝑋𝑉)
lspprcl.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspprcl (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆)

Proof of Theorem lspprcl
StepHypRef Expression
1 lspprcl.w . 2 (𝜑𝑊 ∈ LMod)
2 lspprcl.x . . 3 (𝜑𝑋𝑉)
3 lspprcl.y . . 3 (𝜑𝑌𝑉)
4 prssi 4498 . . 3 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
52, 3, 4syl2anc 696 . 2 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
6 lspval.v . . 3 𝑉 = (Base‘𝑊)
7 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
8 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
96, 7, 8lspcl 19178 . 2 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆)
101, 5, 9syl2anc 696 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wss 3715  {cpr 4323  cfv 6049  Basecbs 16059  LModclmod 19065  LSubSpclss 19134  LSpanclspn 19173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-plusg 16156  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mgp 18690  df-ur 18702  df-ring 18749  df-lmod 19067  df-lss 19135  df-lsp 19174
This theorem is referenced by:  lspprid1  19199  lspprvacl  19201  lsmelpr  19293  lspexch  19331  lspindpi  19334  lsppratlem4  19352  lsatfixedN  34799  dvh3dim2  37239  dvh3dim3N  37240  lclkrlem2v  37319  lcfrlem23  37356  lcfrlem25  37358  mapdindp  37462  baerlem3lem1  37498  baerlem5alem1  37499  baerlem5blem1  37500  baerlem5amN  37507  baerlem5bmN  37508  baerlem5abmN  37509  mapdh6aN  37526  mapdh6b0N  37527  mapdh6iN  37535  lspindp5  37561  mapdh8ab  37568  mapdh8ad  37570  mapdh8e  37575  mapdh9a  37581  mapdh9aOLDN  37582  hdmap1l6a  37601  hdmap1l6b0N  37602  hdmap1l6i  37610  hdmap1eulemOLDN  37616  hdmapval0  37627  hdmapval3lemN  37631  hdmap10lem  37633  hdmap11lem1  37635  hdmap11lem2  37636  hdmap14lem11  37672
  Copyright terms: Public domain W3C validator