![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspprcl | Structured version Visualization version GIF version |
Description: The span of a pair is a subspace (frequently used special case of lspcl 19178). (Contributed by NM, 11-Apr-2015.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspprcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprcl.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lspprcl | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprcl.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspprcl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | lspprcl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
4 | prssi 4498 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
5 | 2, 3, 4 | syl2anc 696 | . 2 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
6 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
7 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 6, 7, 8 | lspcl 19178 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆) |
10 | 1, 5, 9 | syl2anc 696 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 {cpr 4323 ‘cfv 6049 Basecbs 16059 LModclmod 19065 LSubSpclss 19134 LSpanclspn 19173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-minusg 17627 df-sbg 17628 df-mgp 18690 df-ur 18702 df-ring 18749 df-lmod 19067 df-lss 19135 df-lsp 19174 |
This theorem is referenced by: lspprid1 19199 lspprvacl 19201 lsmelpr 19293 lspexch 19331 lspindpi 19334 lsppratlem4 19352 lsatfixedN 34799 dvh3dim2 37239 dvh3dim3N 37240 lclkrlem2v 37319 lcfrlem23 37356 lcfrlem25 37358 mapdindp 37462 baerlem3lem1 37498 baerlem5alem1 37499 baerlem5blem1 37500 baerlem5amN 37507 baerlem5bmN 37508 baerlem5abmN 37509 mapdh6aN 37526 mapdh6b0N 37527 mapdh6iN 37535 lspindp5 37561 mapdh8ab 37568 mapdh8ad 37570 mapdh8e 37575 mapdh9a 37581 mapdh9aOLDN 37582 hdmap1l6a 37601 hdmap1l6b0N 37602 hdmap1l6i 37610 hdmap1eulemOLDN 37616 hdmapval0 37627 hdmapval3lemN 37631 hdmap10lem 37633 hdmap11lem1 37635 hdmap11lem2 37636 hdmap14lem11 37672 |
Copyright terms: Public domain | W3C validator |