MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfval Structured version   Visualization version   GIF version

Theorem lspfval 19175
Description: The span function for a left vector space (or a left module). (df-span 28477 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspfval (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Distinct variable groups:   𝑡,𝑠,𝑆   𝑉,𝑠,𝑡   𝑊,𝑠
Allowed substitution hints:   𝑁(𝑡,𝑠)   𝑊(𝑡)   𝑋(𝑡,𝑠)

Proof of Theorem lspfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lspval.n . 2 𝑁 = (LSpan‘𝑊)
2 elex 3352 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6352 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
4 lspval.v . . . . . . 7 𝑉 = (Base‘𝑊)
53, 4syl6eqr 2812 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
65pweqd 4307 . . . . 5 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
7 fveq2 6352 . . . . . . . 8 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 lspval.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
97, 8syl6eqr 2812 . . . . . . 7 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
10 rabeq 3332 . . . . . . 7 ((LSubSp‘𝑤) = 𝑆 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
119, 10syl 17 . . . . . 6 (𝑤 = 𝑊 → {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
1211inteqd 4632 . . . . 5 (𝑤 = 𝑊 {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡} = {𝑡𝑆𝑠𝑡})
136, 12mpteq12dv 4885 . . . 4 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
14 df-lsp 19174 . . . 4 LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}))
15 fvex 6362 . . . . . . 7 (Base‘𝑊) ∈ V
164, 15eqeltri 2835 . . . . . 6 𝑉 ∈ V
1716pwex 4997 . . . . 5 𝒫 𝑉 ∈ V
1817mptex 6650 . . . 4 (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}) ∈ V
1913, 14, 18fvmpt 6444 . . 3 (𝑊 ∈ V → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
202, 19syl 17 . 2 (𝑊𝑋 → (LSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
211, 20syl5eq 2806 1 (𝑊𝑋𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑡𝑆𝑠𝑡}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  {crab 3054  Vcvv 3340  wss 3715  𝒫 cpw 4302   cint 4627  cmpt 4881  cfv 6049  Basecbs 16059  LSubSpclss 19134  LSpanclspn 19173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-lsp 19174
This theorem is referenced by:  lspf  19176  lspval  19177  00lsp  19183  mrclsp  19191  lsppropd  19220
  Copyright terms: Public domain W3C validator